
AD-AIS3 294 DSS (DECISION SUPPORT SYSTEM) DEVELOPMENT EFFORTS AT 1A'
THE HRE ISLW NVAL SNXPVRD(U) NAVAL POSTGRADUATE
SCNOOL MNUTEREY CA M F RALL ET AL. "AR 8?

UNCLRSFIED F/ /1 L

EE.Ehhmomhhhhmu
somhhhhhmhum
EohhEEEmhhmhEE

1.0 1-' 2=

111,1 I.I 2.

L

0

11111.2 111.4 1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

. ,," ,,- , ,.%.", , " . , .

ufl FILE 7'

N NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTICtELECTEn

00 %IAuG 1 717f

I THESIS
10 DSS DEVELOPMENT EFFORTS AT

THE MARE ISLAND NAVAL SHIPYARD

by

Michael F. Rail
and

Richard N. Woodman

March 1987

Thesis Advisor: Norman R. Lyons

Approved for public release; distribution is unlimited.

Li1

unclassified.
SECURITY C4.ASSIPICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Is REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

unclassified____________________
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION'lAVAILABIUITY OF REPORT

2b.OECASSFICTIOIDWNGA~iG SHEDLEApproved for public release;
2b ECLSSIICAIONI DWNGADIG SHEDLEdistribution is unl imi ted.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUVBER(S)

6.. NAME OF PERFORMING ORGANIZATION I6b OFFICE SYMBOL ?a. NAME OF MONITORING ORGANIZATION

aval Postgraduate School IftkWO Naval Postgraduate School
__________________1 54 ____________________

6c. ADORE SS (01ty. State. a&W ZIP COd) 7b. ADDRESS (01ty. State. and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

B1a NAME OF FUNOINGiSPONSORING 1$b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION J(if applkcabl)

BC, ADDRE SS (Cat)' State. and ZIP Coale) 10 SOURCE OF FUNDING NUMBERS

PROGRAM IPROJECT TA5~ I WORK UNIT
ELEMENT NO 1 NO 10ACCESSION No]

I I TITLE (Include Security ClassificaionI) DSS DEVELOPMENT EFFORTS AT THE MARE ISLAND NAVAL
*SHIPYARD

12 PERSONAL AUTHOR(S) Rall, Michael F. and Woodman, Richard N.

1]3 TYPE OF REPORT 113b TIME COVERED 14 DATE OF REPORT (Year. Month. Day) jIS PAGE COUNT
Maser' Tesi IFROM __TO ___I1987 March 30

6 SUPPLEMENTARY NOTATION

7 COSATI CODES 1S SUBiECT TERMS (Continue on reverse if necessary and identify by block number)
V.ELD GROUP SUB-GROUP Decision Support System (DSS); budget develop-

ment and control

.9 ABSTRACT (Continue, on reverse of necessary and .gPentlfy beblock number)
The mandate of a cost conscious Congress and American people caused
NAVSEASYSCOM to commission a study to identify areas for improvement within
US Naval Shipyards. Budget development and control was one area
identified. The focus of this thesis is centered on a single shipyard,
the Mare Island facility, detailing the budgeting operations of one of its
departments. The objective is to develop an initial pilot project, a
prototype Decision Support System (DSS), that will address the concerns
of budget preparation, control and variance analysis. Additionally, this
pfroject assesses the feasibility of larger DSS efforts within the shipyard.
The methodology of the development was a blend of structured and typical
DSS approaches, providing flexibility with rigorous documentation. Further
e'ffort toward integrating the findings of this thesis with the present
accounting system is recommended to expand the use of decision support

20 0 S5R!3UTiON AVAILAILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
10,:NCLASSIFIEDIUNLIMITED 03 SAME AS RPT O3DTIC USE RS unclassified

22a NANAE OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Includle Area Code)J 22C O~fl'U SYMBOL

Prof. Norman R. Lyons (408) 646-2666 1 Code S4Lb

L()FORM 1473. 84 MAR 3 APR edition may be used until Oxhausted SECURITY CLASSIFICATION Of TNIS PAGE

Approved for public release; distribution is unlimited.

DSS Development Efforts
at

The Mare Island Naval Shipyard

by

Michael F. Rail
Lieutenant, United States Coast Guard

B.S., United States Coast Guard Academy, 1981

and

Richard N. Woodman
Captain, United States Marine Cors
B.A., St. Lawrence University, 1977

Submitted in partial fulfilment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
March 1987

Authors:
4e

Michmel F. Rail

Approved by: _& Noma ". 00o9 ees'Advisor

' . Jams V . Due, Second Reader

Willis R. Ureer Jr., Chairman,
Department of Administrative Science

Kneale T- Marshau-
Dean of Information and PolicyS-iefi-ci--eh,

2

€ €, /,d' r, y, ,s .. s . ,.' ,--" €..-. ¢:.s~ -.....-.. ' .-.-,, ',:-.:,,,:-..,:.':-,'-.'-.:.: '-,g.',,x %;:' ° .

ABSTRACT

The mandate of a cost conscious Congress and American people caused
NAVSEASYSCOM to commission a study to identify areas for improvement within

US Naval Shipyards. Budget development and control was one area identified. The

focus of this thesis is centered on a single shipyard, the Mare Island facility, detailing

the budgeting operations of one of its departments. The objective is to develop an

initial pilot project, a prototype Decision Support System (DSS), that will address the
concerns of budget preparation, control and variance analysis. Additionally, this

project assesses the feasibility of larger DSS efforts within the shipyard. The

methodology of the development was a blend of structured and typical. DSS

approaches, providing flexibility with rigorous documentation. Further effort toward

integrating the findings of this thesis with the present accounting system is

recommended to expand the use of decision support within the shipyard. .
"-.... , ...'. v - /" -" /" , " ' F: 'I ' .

Lcces .ion For *-- . . , , -.

1TTS GRA&I\DTIC TAH

iu-tificato

Distrib Utton/ -...

Availability Code

;Avail and/or

ist sp c al , aC

- -o

3

;°*S

- "'Sum. *~ %* %in~a~; i'*Ci a...

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational and

logic errors, they cannot be considered validated. Any application of these programs

without additional verification is at the risk of the user.

4

TABLE OF CONTENTS

INTRODUCTION ... 15
A. BACKGROUND ... 15
B. OBJECTIVES .. 16
C. RESEARCH QUESTIONS 16
D. SCOPE AND LIMITATIONS 16
E. LITERATURE REVIEW AND METHODOLOGY 17

1. Literature Review 17
2. M ethodology ... 18

F. SUMMARY OF FINDINGS 18
G. ORGANIZATION OF STUDY 18

II. BACKGROUND .. 20
A. THE COOPERS AND LYBRAND STUDY 20
B. COST CLASSIFICATION 22

C. IU ,!LIQ,, DGET CONTROL AND
VL VK............................ 24

D. SABRS .. 26

III. L AND THEORET;CAL 28FRAM EWORK2

A. DSS DEFINITION 28
B. DESIGN AND IMPLEMENTATION 28

I. Structured Approach 28
2. DSS Approach .. 29
3. Problem Defimition 30
4. Strategic DSS Development 30
5. Tactical DSS Development 31
6. A DSS Action Plan 31
7. RO M C .. 32

C. AREAS OF DESIGN 33

5

I. User Design .. 33

2. System Interface 33

3. Data Base Management 34

D. ENVIRONMENT .. 34

1. Attitudinal Direction and Requirements 34

2. Developmental Requirements 35

3. DSS Prototyping 35

4. User Education 35

5. Support for DSS 36

E. FINAL WORDS .. 36

IV. METHODOLOGY ... 39

A. INTRODUCTION .. 39

B. ITERATIVE DEVELOPMENT 40

1. Problem Definition 40

2. Structured Techniques 41

3. Data Base Development44

V. PRESENTATION OF THE PROTOTYPE RESULTS 46

A. REQUIREMENTS DEFINITION 46

1. Cost Center Analysis (Minicomputer) 46

2. Cost Center Analysis (microcomputer) 52
B. GRAPHICS MODULE 58

1. TEL-A-GRAF .. 59

2. Graphics on the Microcomputer 66
C. D A TA .. 67

1. Data Base on the Microcomputer 67

2. Historical Data Base 68
3. Data Base Design 68

VI. INTERPRETATION OF THE DEVELOPMENT EFFORT 71

A. ANALYSIS OF THE METHODOLOGY 71

1. Documentation 72

2. Iterative Approach 72

3. Com m unication 73

6

4. Remote Site Development 74
B. RESULTS FROM CCA PILOT PROJECT 74

1. Data Base Design 75
2. Longterm Data Base Considerations 76

VII. CONCLUSIONS AND RECOMMENDATIONS 77
A. CONCLUSIONS ... 77
B. RECOMMENDATIONS 78
C. SUM MARY ... 80

APPENDIX A: STRUCTURED SPECIFICATION 81
1. DATA FLOW DIAGRAM 81
2. MINISPECIFICATION 81
3. DATA DICTIONARY 84
4. AUTOMATED DATA DICTIONARY 99

a. M ethod .. 99
b. Data Representation 99
c. Data Maintenance 99

d. Data Security 99
e. Back-up and Recovery 99
f. Budget Table Structure 100
g. Expense Table Structure 101
h. System Files ... 102
i. Programs and Modules 104
j. Data Elements 108
k. System Element Hierarchy 111

5. UFI FILES ... 115
a. BUDGET.UFI 115
b. EXPENSE.UFI 116

APPENDIX B: COST CENTER ANALYSIS USER MANUAL
(M INICOM PUTER) 124

1. INTRODUCTION 124
2. REQUIREMENTS 124
3. STARTING THE SYSTEM 124

7

L ononr~mm ---------

4. MAIN MENU .. 124

5. CHOOSE COST CENTER MENU 126

6. GRAPH PLOT CODE MENU 126
7. PLOT OPTIONS MENU 127

8. ENTER TEL-A-GRAF 128
9. USING TEL-A-GRAF 129

a. Making Your Own Data Files 130
b. TEL-A-GRAF Commands 132

APPENDIX C: s T NALYSIS USER MANUAL
(MROOMPUER) 135

1. INTRODUCTION 135

2. REQUIREMENTS................................. 135
3. STARTING THE SYSTEM 135
4. M AIN M ENU .. 136
5. INFORMATION AVAILABLE 137
6. BUDGET VS EXPENSES 137
7. TOTAL BUDGET VS EXPENSES...................... 138
8. BGj EVS EXPENSES (HOUR, LABOR, MATERIAL

)R O..ERS) 139
9. JOB ORDER INFORMATION MENU 140

10. JOB ORDER NUMBER INPUT MENU 140
11. COST FUNCTION INPUT MENU 142
12. COST CLASS INPUT MENU 142

.13. GRAPHICS .. 142
14. AD Hoc. UPDATES, DELETIONS, MODIFICATIONS

W ITH RACLE ... 148
a. Introduction ... 148
b. Getting in and out 148

c. Ad Hoc Queries 148
d. Joins ... 150
e. Mathematical Manipulations 150

f G roup By ... 151
g. Sub Queries ... 152
h. U pdates .. 153

8--

I. Deletions .. 153
j. Modifications 154

k. Other Goodies155

L Editing in iFl 156
m. Summary of VFI and SQL Commands for Command

Level Prcesig 157

APENIXD J 1 ,k-GRAF PROGRAMS .FOR PRIM.E ... 5
1~PIOLVIUILE~........................... 15

1. CPL PROGRAMS 159
a. PR...CPL .. 159
b. DIS.CPL 159
c. NL2.CPL 160
d. CTEL.CPL 160
e. MANTrEL.CPL 160
f. SCC.CPL 160
g. DCC.CPL....................................... 161
hi. VCC.CPL....................................... 161
L. SPLT.CPL 161
j. DPLT.CPL 162

k. V LT. PL 16

L. VPLT.CPL *...................................... 162
L. SPLO.CPL 163
in. DPLO.CPL...................................... 163
o. VPTL.CPL...................................... 164
p. OPE.CPL 164
p. FREGE.CPL 172

DOUB E.C L 17

q. SINGLE.CPL 172
r. DOUBLE.CPL.................................... 172

u. QUAD.CPL *......................... 174
2. TELL-A-GRAF PROGRAMS 174

a. TAGPRO.DAT: Tdll-A-Graf Profile File 174
b. B 1: Bar Chart For Budget 175

c. EX2: Plot of Budget vs Expense 175I

9

d. EX112: File Appended to EX2 For 9112 176

e. EXII3: File Appended to EX2 for 9113 176

C EXII4: File Appended to EX2 for 9114 176

. EX 11: File Appended to EX2 for 9 176

h. EXI 16: File Appended to EX2 for 9116 176

. EX117: File Appended to EX2 for 9117 177

j. EX17: File Appended to EX2 for 9118 177

. EXII9: File Appended to Ex2 for 9119 177

L B4: Triple Bar Chart, Budget, Budget %, Expense 177

m. BII2: Appends B4 for 9112 177

n. B113: Appends B4 for 9113 178

o. B114: Appends B4 for 9114 178

p. BI: Appends B4 for 9115 178
q. B116: Appends B4 for 9116 178

r. B117: Appends B4 for 9117 178

s. BI IS: Appends B4 for 9118 179

t. B119: Appends B4 for 9119 179

u. PERBAR: Bar Chart Percent Expended 179

v. NORBAR- Bar Chart Normalized for Elapsed Time 180

w. .VARBAI- Bar Chart Variance in Dollars 180

x. PERVAR: Bar Chart Percent Variance 180
y. B110: Data File for BI 181
z. BEIO: Data File for EX2 181

aa. BBEI10: Data File for B4 181

ab. PB 110: Data File for Perbar 182

hc. NB 110: Data File for Norbar 182
ad. VBIIO: Data File for Varbar 182

ae. PVIIO: Data File for Pervar 183

APPENDIX E: C PROGRAMS FOR THE MICROCOMPUTER 184

I. CCA .C ... 184

2. PROJA.C ... 208

3. O RCA IN P .. 282

4. BA R .C ... 284

to

5. PLOT.C .. 288

6. COM BO.C .. 293

7. TRIPBAR.C .. 300

LIST OF REFERENCES .. 305

INITIAL DISTRIBUTION LIST .. 307

b

11

LIST OF TABLES

1. COST FUNCTIONS..22

2. COST CLASSTIONS. 233. COSTf CLASS2
3 AUTHRID COST F TO COST CLASSES Y 2

AU TORIED FO ADIA RZED 24
4. TOP LEVEL DATA FLOW DIAGRAM 82
5. FIRST LEVEL DATA FLOW DIAGRAM 83

6. SECOND LEVEL DATA FLOW DIAGRAM OF PROCESS 1.0 84

12

#t

A

LIST OF FIGURES

3.1 DSS Components (Functions) 37

5.1 Structure Chart of CCA (minicomputer) 47

5.2 Continued Structure Chart of CCA (minicomputer) 49

5.3 Continued Structure Chart of CCA (minicomputer) 50

5.4 Hierarchy Chart of CCA (microcomputer) 54

5.5 Continued Hierarchy Chart of CCA (microcomputer) 56

5.6 Composite Graph, Bar Chart and Plot of Budget VS Expense 59
5.7 Sample TEL.A-GRAF Profile File 60

5.8 TEL-A-GRAF Data File 62

5.9 Triple Bar Graph for Cost Center 9110 63
5.10 Four Graphs for Variance Analysis 65

5.11 Data Base Design Bachman Diagram 68

B. CCA Top Level M enu ... 125

B.2 Prompt for the user's response 126

B.3 Prompt for the user's response 127

B.4 Plot Code Selections ... 128

B.5 Plot Option Selections .. 129

B.6 Completion Query ... 129

B.7 TEL-A-GRAF Data File for Triple Bar Chart 130

B.8 Name of Data Files Matched With the Appropriate Graphs 131
B.9 Graphic Program Module Relations 133
B.10 Interactive Session with TEL-A-GRAF 133

.1 Cost Center Analysis Main Menu 136
C.2 Information Available.Menu 137

C.3 Budget vs Expenses M enu .. 138
C.4 Total Budget vs Expenses Menu 139
C.5 Budget vs Expenses by Hour, Labor, Material or Other 139
C.6 Job Order Information Menu 140

13

C.7 Cost Function Number Input Menu 141

C.8 Cost Class Number Input Menu 141

C.9 Job Order Number Input Menu 142

C.10 Single Budget Bar Graph ... 143

C.11 Plot of Budget and Expenses 144

C.12 Triple Bar Graph .. 145

C. 13 Plot of Budget and Expenses with Bar Graph Overlayed 146

C.14 Allowable Modifications of Graphs 147

C.15 Output of Using the GROUP BY Command 152

14

1. U4TRODUCTION

A. BACKGROUND
In past years, Naval Shipyards operated in a 'zero gain/zero loss' mode. That

orientation is rapidly changing. The thrust of this change is that Defense Department

managers must be concerned with costs. In keeping with this spirit,

NAVASEASYSCOM od a study of US Naval Shipyards to identify
functional areas needing improvement. The contracted analysts investigated all areas

of the shipyards and found numrous problems. In the MIS systems area it was found
that the central system was behind technology and producing poor management

reports.
Budget development and control was also found to be lacking. In the past there

was little incentive to be concerned with budgets, since cost was not a critical concern.
But budget preparation is particularly important in maintaining control of costs. There
will be little improvement unless a budget and expense monitoring capability is p

provided for the shipyard managers. In light of these concerns and developments, this

study undertook to develop and investigate the feasibility of a Decision Support

System (DSS) that would assist managers at the shipyard with budget preparation and

controL Additionally, the specific methods of cost classification at Naval Shipyards are

discussed. These classifications are by Cost Center, Cost Function, and Cost Class,
and are the vehicles by which costs are portrayed.

Within the Management Engineering and Information Office (MEIO), at the
Mare Island Naval Shipyard, budget development and control is performed by the
department budget analyst with inputs from the department managers. Departmental

budgets are presently developed annually. The primary budget process inputs originate
from the Comptroller with additional inputs from within MEIO, although these are not

formal inputs.
Budget analysts are also responsible for providing responses to ad hoc queries

from the shipyard and department managers. Those queries can come in the form of
requests ror cost accrual analysis to investigations of variances the managers feel may
be potential problem areas.

15

Ie

The Shipyard Automated Budget Reporting System (SABRS) is a new addition

to the shipyard's accounting systems. It will allow in depth cost analysis, and
assistance in the preparation of budgets. Presently, not all of its features are

operational.

B. OBJECTIVES
The primary objective of this thesis is to develop an initial pilot project, a

prototype DSS, that will initially address the concerns of budget preparation, control
and variance analysis within the Mare Island Naval Shipyard. In addition, it is
intended that this DSS will be the first step in a larger effort to provide managers
access to an easy to use, graphically oriented, and organization-wide system. With

these objectives in mind, the final objective will be to assess the applicability of larger
DSS efforts within the shipyard.

A byproduct of the project will be to provide understanding and insights into the
use of programs that are on-hand at the shipyard and incorporated into the DSS. We
feel that, in the past, most organizations have had a tendency to go for the salesman's
hype, rather than exhausting the possible capabilities of present systems first. The
hope is that the users will at least be given the tools with this DSS to further explore
on-hand programs.

C. RESEARCH QUESTIONS
The most important question to answer in this research is, what is the best

method to integrate the available tools to produce a coordinated, specific DSS? The
insights gained from this effort will identify the best way to develop future DSS's.

Secondly, we attempted to investigate the most efficient methodology of system
development. To do this we followed the iterative approach identified by Keen, Scott
Morton [Ref. I] and Sprague and Carlson [Ref. 2]. Also, we elected to use the
.structured techniques' of Yourdon [Ref. 31 and De Marco [Ref. 41 where applicable.

The structured approach is more rigorous in its requirement for documentation. This
will be prove to be beneficial for the users in enhancing their understanding, and for
later developers conducting maintenance and expansion.

D. SCOPE AND LIMITATIONS
We approached this project as a prototype, an experiment to determine the

applicability of a DSS to shipyard-wide decision support for management. The intent

16

was to learn from this experiment, refine the results, and subsequently expand the

system. In effect, this project was a feasibility study.

In order to meet the requirements of resources and time, the scope of this project

was limited to the budget analysis and control requirements of MEIO. This fact does

not diminish the information to be learned.

The DSS was implemented on two systems: a PRIME 9755 minicomputer which

is linked in a shipyard-wide Local Network and a standalone IBM microcomputer

configuration. The requirement to use the PRIME was a limitation because it required
us to learn a new system and language. It was also an opportunity since any useful

systems developed could easily be used by any other department on the Local

Network. Additionally, as mentioned earlier, the minicomputer implementation made

use of programs presently available at the shipyard. The resource constraints and the

experimental nature of this project precluded purchasing software that would meet the

needs of shipyard managers.

The portions of the project written by the authors were done in PRIME's

Command Processor Language (CPL) for the minicomputer and C for the

microcomputer. They allowed the use of structured programming techniques and

constructs, which we felt were essential to producing code with minimal errors. Both

of these helped to support the rapid development approach required with the iterative

prototyping methodology.

L LITERATURE REVIEW AND METHODOLOGY

I. Literature Review

In an attempt to clarify the term DSS, a literature review was conducted to

provide a general definition based upon those suggested by the key investigators in this

area of research. DSS, as opposed to MIS, attempts to work in the vague arena of

unstructured problems. To highlight the differences, the "structured techniques" were

compared to the usual DSS development approach. In certain ways, we noted some

parallels and similarities. An important parallel is seen in the logical first step of each.

The structured approach looks at problem definition. the DSS approach to the

identification of a key decision. Those starting points provide the scope within which

the project developments take place.

The authors we reviewed stressed the importance of organizational approaches

to DSS development strategies. Integrating DSS to the organization requires careful

17
I'/.

planning. The technology levels, the appropriate tactical option, and a coherent

'action plan' for DSS must be carefully selected. The hygiene issues facing a DSS
development are critically important to the success of the system. These environmental

issues require close consideration by any would-be developer.

In conducting the analysis for a DSS, we highlight one proposed by Sprague

and Carlson [Ref. 2]. It is an alternative pattern of analysis which is different than the

usual systems analysis methods, in that it is process independent and not data driven.

2. Methdology
The development effort of this thesis was a blend of structured and DSS

approaches, using each where it was most logical. This provided us with a very flexible

methodology. The cornerstone was 'iterative development, which was the cement

that united the two disparate methodologies we incorporated.

Our goal was to have the flexibility of the DSS approach, but retain the

rigorous documentation standards of the structured techniques. Therefore, we used the

structured techniques within the overall framework of the DSS approach.
We also identified the need to include data base development requirements

within our methodology. The data base is important to the operation of DSS systems,

so those issues should not be ignored.

F. SUMMARY OF FINDINGS

The methodology we selected provided us with a flexible, but rigorous

development environment. This would essentially equate to the prototyping approach

mentioned by Yourdon [Ref. 31. For DSS. the slack produced by this methodology is
essential because of the vague nature of unstructured problems.

We also found that the structured techniques that are actively employed within

the general DSS framework were absolutely necessary to ensure that sufficient

documentation was developed with the prototype system to assist future development

efforts. In fact, the techniques fit very well with the DSS approaches we identified.

Both sides of the coin are needed. The blending rests clearly with the iterative nature

of DSS approaches. Without it. the reconciliation between the dissimlar approaches

could not be bridged.

G. ORGANIZATION OF STUDY

Chapter Two presents the background on the Mare Island Naval Shipyard and

its present systems. The reader is given an appreciation if the problems tacmn the

18

shipyard managers and how our project is an attempt to deal with one area: budget

prepration, control, and variance analysis.

Under the framework identified by the background, the issues concerning DSS

development in the current literature are discussed in Chapter Three. This presents the

current understanding of the role of Decision Support Systems, and provides a specific

definition.

Refining the general issues further, Chapter Four presents the methodology we

followed in our development effort. This methodology is an outgrowth of the areas of

importance identified during the literature review and the background study.

Chapter Five presents the pilot projects which we developed, defining specific

, design issues we faced. Chapter Six develops an analysis of the projects presented in

Chapter Five. We focus on lessons learned and identify key areas of concern for future

developers.

.9

'1
.1i

I!. BACKGROUND

A. THE COOPERS AND LYBRAND STUDY
During 1985, the Coopers and Lybrand accounting firm conducted a

management analysis of all US Naval Shipyards. The scope of the analysis consisted

of all functional areas of shipyard operations and management.
In the MIS arena, they found that the central system is woefully behind

technology. It produces reports which are not timely and are marginally useful.
Additionally, NAVSEASYSCOM gave little direction concerning the growth and
acquisition of the hardware and software components of computer systems for the
shipyards. Consequently, both external and internal incompatibility resulted.

Budget development, execution and control were also found to be lacking. In the
past, managers had little incentive to keep budgets under control since cost was not a
critical management concern. The present budget concerns of the Congress and the
American people have resulted in the need for all government agencies and activities to
take a closer look at the management of their operations, and take the necessary
actions to rectify situations where resources are wasted.

As stated in the Coopers and Lybrand report [Ref. 5: p. FIN-21]:
'The (present) budget process does not support meaningful variance analysis.

Several factors contribute to this problem:'

eTe budget is perceived, by many shipyards as a funding tool and is not

ectively used as a planning and control tool.

The budget loses creoibil'ty as an effective management tool because it does not, uately account for the impact of changes in demand. It is not capable of
efetively supporting analyses of spening and volume variances, particularly at
the department of responsibility center level.

Specifically associated with managing costs in the shipyards was the lack of'

sufficient incentives "for departments to come in under budget."

Th. budget isv* d as a spending limit, not a spending target..he NIF budget
policy manual. e. I even states that 'the b ud et is a plan o the activitv toattalfi a cumulative no gain no loss position at the end of the budget -,ear. The
manual savs further thal the established overhead races miould be-deetoped..,0
that zero balance variance between actual mnd aplped overhead is ac:ieved at
year end to avoid the requirement of distribution thereof.

20

This attitude encourages department managers to spend to their budget limits
because thley believe that tavorable budget variances frsquen.tly result m a
reduction in subsequent budget allowances. While t e fmancial s'stems are
capabl of isolatingpoor perioance, they are not etlective at dentif6ig and
rewarding good perftormance. Tie manager who does have a favorable budget
variance, not onty does not get tavorable recognition, but may also find himself

im -reduced funds the next fiscal period

Budgets were prepared quarterly or annually before the study was initiated. The

management analysts of Coopers and Lybrand were concerned by this practice. They

believed monthly budget preparation would improve the quality of the planning

process [Ref. 5: p. FIN-17-18].
'Departments are not required to justify projected costs in sufficient detail.

Projected costs are not based on key activity indicators." [Ref. 5: p. FIN-181 Managers

need some method of analyzing various costs in order to analyze variances, to project

future budgets and to defend those budget projections. They need performance

measures or indicators to chart their current status.

The study also reported that managers were not generally involved in the

preparation of their departments' budgets. "Since these managers lack a sense of

ownership for the budget, it loses some of its effectiveness as a motivation tool."

[Ref. 5: p. FIN-19]
Budget effectiveness was reduced because of the poor quality of budget

submissions. Many budgets required later revision. "In addition, shipyard

management emphasizes total departmental control points. Little emphasis is placed
on adherence to the budget on a line item basis. For example, an analysis of the year

end actual versus budget report for a shop in one shipyard identified by the study

[Ref. 5: p. FIN-20]:
1. Six line items with expenses up to S 107,000, but no budgeted amounts.

2. Twelve items with ranges of favorable budget variances, from S3000 to
S248,000.

3. Thirteen line items with unfavorable budget variances from S1000 to S142,000.

Budget variances are determined by comparing budgeted amounts to actual

expenses. If the actual expense Is less than the budgeted amount, a Favorable variance

exists. An unfavorable variance occurs if the actual expense is greater than the

budgeted amount. Unfavorable variances are to be avoided.

21

1. COST CLASSIFICATION
Two important means of classifying costs are by Cost Function and by Cost

Class. Cost functions group costs into functional areas. Each Cost Center, which is
equivalent to a department, has several Cost Functions under it, depending on the
nature of its work. For example, the MEIO is Cost Center 9110. Under its control are
eight Cost Functions designated numerically from 9112 to 9119. Table 1 shows the
names of these Cost Functions.

TABLE 1
COST FUNCTIONS

9112 Administration
9113 Administration

9114 Rental and Maintenance of ADP Equipment
9115 Operations
9116 Control and Scheduling
9117 EDP Operations

9118 Key Entry Operations
9119 NAVSEA NSY MIS Program

Each expense incurred by MEXO falls under one of the listed Cost Functions.
The sum of the expenses of all Cost Functions under a Cost Center is the amount
expended by that Cost Center. Cost Functions relate to Resource Management
System functional'subfunctional categories defined inthe Navy Comptroller's Manual
[Re. 71.

Cost Class is another way expenses are classified. A Cost Class is the
identification of the type of an expense. They relate to elements of expense, under the
RMS system. "which tell what kind of resources are used [Ref. 7]. Each Cost Center
has certain authorized Cost Classes. MEIO, for example, is authorized 21 different
Cost Classes under which it may spend. Table 2 lists the authorized Cost Classes for
Cost Center 9110.

22

U!

TABLE 2
COST CLASS

02 Supervision. Graded

03 Non Supervision, Graded

04 Non Supervision, Ungraded

10 Lost Time

i1 Tme Allowed

12 Consumeable Supplies

19 Coding Rejects

23 Union Activities

28 Alterations

30 Travel

32 Rent and Communications

33 Printing, Reproduction, and Duplicating

39 Training, Other

43 Depreciation of Purchased Equipment

54 Shop, General Non Labor

68 Acquisition of Minor Property

91 ADP Supervision

92 ADP Analyst/ Programmer

93 ADP Operations

94 ADP Rent/Communications

95 ADP Maintenance

96 ADP Contractual Services

97 ADP Consumeable Supplies and Installatior

98 ADP Minor Property

99 ADP Training

All expenses are thus classified under both Cost Function and Cost Class. Only

certain Cost Classes are authorized under a given Cost Function however. A Cost

23

Class can be present in many Cost Centers, unlike Cost Functions which are related to

their particular Cost Center only. Table 3 shows the authorized Cost Classes for the
Cost Functions under the Cost Center 9110.

TABLE 3

A 0Bj9EF~ NOT

Cost Function
Cost
Class 9112 9113 9114 9115 9116 9117 9118 9119

02 Y Y N Y Y Y Y.Y

04 Y Y Y Y Y Y Y Y
11 Y Y N Y Y Y Y Y
12 Y Y Y Y Y Y Y Y
23 N Y N N N Y Y N
28 Y Y Y Y Y Y Y Y
30 Y Y Y Y Y Y Y Y
32 N Y Y Y Y Y Y Y
33 Y N Y Y Y Y Y Y
39 Y Y N Y Y Y Y Y
43 Y y y y y y y y
54 y y y y y y y y
68 Y Y Y Y Y Y Y Y
91 Y Y N Y Y Y Y N
92 N Y N N N N N N
93 Y Y N Y Y Y Y N
94 N N Y N N N. N N
95 N N Y N N Y N N
96 Y Y N N N Y N N
97 Y N N N N Y N N
98 Y N Y N N N N N
99 Y Y N N N Y N N

C. JECPESENT MEIO BUDGET CONTROL AND DEVELOPMENT

As pointed out by Coopers and Lybrand, the department manager is responsible
for his department's budget, and therefore should be involved in the budget
development process. His involvement comes in the form of monitoring the
development process.

The budget control and development activity within MEJO involves two key
groups: the departmental managers and budget analyst. In most cases their give and

24

'7 .'%',rv% - * .
98'~, . --p*' * . ..

take in identifying resources required develops the budget over time. Various managers

submit their sections' needs and the budget analyst reconciles those with direction from

top department management and the Controller department. The key to this process is

"that the lines of budget submission and approval must follow the lines of

organizational responsibility." [Ref. 7: p. C-41 This process is graphically depicted in

the structured specification in Appendix A.

Departmental budgets are prepared annually and submitted to the shipyard

Comptroller. They are developed by the particular department's budget analyst with

various inputs and constraints presented from within the department and without.

Budget request inputs and clarifications are received from departmental managers.

Specific MEIO requirements and constraints are received from the top departmental

management. The Comptroller's office submits various budget constraints to all

shipyard departments. These include dollar ceilings and floors, and leave hours not to

exceed 14% of the total budget for labor.

Initially, when we were studying the process to develop the descriptive analysis,

budget input reports were produced and distributed by the Data Processing section of

MEIO. These reports were developed from information submitted by the

Comptroller's office. With the advent of a new shipyard accounting system, SABRS,

the majority of these reports were consolidated into one, and now originate directly

from the Comptroller department. At the present time the report is printed and

distributed manually; however, in the future it is anticipated that it will be

electronically distributed through the Prime network.

At the outset of our analysis, SABR S was still in the coding and testing stage but

past the projected implementation stage. The original contractor had been replaced

and the learning curve for the new programmers delayed the implementation. SABRS

was implemented at the beginning of fiscal year 1987, which was in the middle of our

system development. Consequently, SABRS is the information generation system that

we shall consider throughout this discussion, and not the old reports system.

After the budget input reports are received, they are used to track budget

performance. Performance reports compare budgeted to actual expense by Cost

Function, Cost Class, Cost Function/Cost Class, Cost Center, or by total for the

shipyard. These reports also serve as the basis for developing reports in response to

departmental managers' queries. These queries are ad hoc in the sense that they are

not formalized, but may be requested when managers feel a need to monitor a

25

?'

particular aspect of the budget. For example, prior to the implementation of the

SABRS system, the shipyard Commanding Officer requested a breakdown of costs for

each department by Cost Classes. The reports used at that time did not have the

information summarized by Cost Class for each department and the computer center

did not have the time to handle this one time request. Therefore, the information had

to be extracted by hand from the existing reports. This was not only time consuming

for the budget analysts, but also demonstrates the state of the current computer

system. The desired data was on the computer but there was no easy way to extract it

electronically.

Potential problems are detected by either the managers of a particular

department or by the budget analyst. If a manager finds a potential problem in the

performance report, he will contact the budget analyst who will research the problem.

The reason causing an unfavorable variance can be determined, and the manager can

decide if action is warranted to correct the problem. Or the 'problem" may be the

result of planned expenses and not a real problem at all.

Likewise, if the budget analyst detects a potential problem, she will alert the

appropriate managers. When further information is desired for clarification, job order

information that is associated with the expense may be accessed.1 By accessing on-line

job order information, detailed information on an expense can be obtained. This

ideally will clarify any questionable variances.

D. SABRS
SABRS is a newly implemented accounting system with some interactive capability. It

is primarily intended to be used by the shipyards in the preparation of their annual

budgets for submission to NAVCOMPT. It is an on-line system with several

capabilities.

SABRS I is to be utilized by the budget officers and department budget analysts

to project costs using prior year's actual costs, escalation, and acceleration projection

as well as anticipated workload. The budget can be created from scratch, from existing

information, or from previous budgets. The historical data base is invaluable in

analyzing trends and making budget projections based on those trends. This historical

data base will be limited to only the previous year.

'All work done at the shipyard is assigned a job order number. A *ob order
number consists of the Cost Function number, Cost Class number, and a tbur digitnumber.

26

r v . V -. ~ .-

This interactive system will allow the user to test budget proposals and conduct

'what if analysis of various budget options. Budget detail can run the spectrum from

shipyard total budget, to Cost Center, Cost Function and Cost Class levels. Graphic

display of the resulting analysis is not available with the system.
Although the system has many interactive capabilities for the various users, at

present it is only used to create budget versus actual performance reports (SBR-22A
and SBR-22B). Obviously, the complete system implementation of SABRS I will be
required before the shipyard managers have a comprehensive and sophisticated budget

analysis tool.
SABRS II is designed to allow the users to prepare budget exhibits required by

NAVSEASYSCOM. Although it will provide assistance to the Comptroller's office
and department budget analysts, its analysis capabilities for the average user are

limited.

27

III. LITERATURE REVIEW AND THEORETICAL FRAMEWORK

A. DSS DEFINITION
Many books and articles have been written on DSS. The subject is relatively

new, becoming part of the Information Systems jargon as recently as the mid 70's.
The exact definition of what can be classified as a DSS is itself a gray area.

Peter G. W. Keen and Michael S. Scott Morton [Ref I] are acknowledged as
the major authorities on DSS. Their work was one of the first major writings on the
subject of DSS and is used as a focal point for most subsequent works. They
originated the now standard term DSS. Keen and Morton [Ref 1: p. 15] view DSS as
part of the natural evolution and maturation of information systems and management.
Mature MIS systems should be available before a DSS system can be implemented
with success.

A DSS has been characterized as an interactive, computer-based system that
helps decision makers utilize data and models to solve unstructured problems
[Ref 2: p. 4]. A system requires three capabilities to be classified as a DSS: a data
base management system, a model base management system, and a dialog management
system [Ret. 2: p. 281. MIS deals with structured tasks, while a DSS deals with semi-
structured or unstructured tasks. This divergence from what is considered MIS has
caused the development of new techniques and methodologies for the development of
DSS. These techniques often are not new to the MIS community, but rather have
been considered improper for the development of past MIS.

B. DESIGN AND IMPLEMENTATION

1. Structured Approach
Structured analysis and design is the present popular and successful procedure

for the development of MIS. Structured analysis and design provide a checklist for the
developer to insure all necessary aspects of the system are incorporated. Although
often given other names, the following steps are generally associated with the
structured approach [Ref. 8: p. 17]:

I. Problem definition
2. Feasibility study
3. Analysis

4. System design

28

N h

5. Detailed design

6. Implementation

7. Maintenance

Since DSS is concerned with problems that are classified as semi-structured or
unstructured, it seems logical that a structured approach may not be the best

approach. A structured approach requires that each step be methodically followed as

they are listed. The output for one step serves as the input for the next step in this
top-down approach. Often it is not easy, if not impossible, for an unstructured or

semi-structured task to be fully defined. Therefore, it can be very difficult to develop a
clear design flowing from step to step. The nature of unstructured and semi-structured

task definition involves backtracking through the development steps, following an order
which is not consistent with a top down approach. A structured approach may indeed

have frequent returns to earlier steps, but the sense of progression from step to step

must be maintained [Ref. 8: p. 16]. This progression does not have to be maintained in

DSS development.

2. DSS Approach

Keen and Morton's process for developing a DSS is not a cook book

methodology. There is not as clear cut a process for the design of a DSS, although

several authors note common, key processes that must be accomplished sometime

within the development cycle.

The main distinction between the current trends and practices in the MIS field

and in DSS design can be seen in the concurrency of design and implementation.

Design and implementation are inseparable and evolutionary in DSS [Ref. 1: p. 167].
This is a common thread in the DSS literature. Design and implementation are not

separate phases but two blended iterative steps.
The unstructured nature of DSS problems can result in vague problem

definitions. This vagueness can only be approached through the flexibility of this
iterative DSS methodology. The concurrency of design and implementation act as a
bridge between the designer and the user, increasing their communication. Short as
possible cycles of design and implementation allow the users to frequently evaluate the

development effort and increases understanding of the users' needs.

Two other important authors of DSS literature who built on the ideas

proposed by Keene and Scott Morton are Ralph H. Sprague, Jr. and Eric D. Carlson.

Sprague and Carlson [Ref 21, also emphasized the need for an iterative design. A DSS

29

LW N

must I built with short, rapid feedback from users to ensure that development is
proceeding correct" [Ref. 2: p. 151. This keeps the user involved and aware of the
progess, making change easier and quicker. The stages of typical system
development, analysis, design, construction, and implementation must be "combined
into a single step which is iteratively repeated' [Ref. 2 p.151. This is similar to the
concept expounded by Keene and Scott Morton, except expanded to be more inclusive.
Sprague and Carlson not only included design and implementation in their iterative
methodology, but also analysis.

3. Prohhm DeflEn
Focusing the Approach structured approach commences with the definition of

a problem. Although Keen and Scott Morton's approach is dissimilar to a structured
approach, it does have a logical first step: the identification of a key decision [Ref. I: p.
1731. A key decision, once identified, becomes the focus of the initial DSS. This
narrows the scope of the initial implementation and allows the user the flexibility to
make changes after he sees a working system. Any changes can be designed and
implemented in an iterative fashion.

When choosing what decision to implement, the probability of success is
always increased if the client has a readily identifiable problem or need. Normally this
results in a user who is an excited proponent of the new system. The 'anything is
better than what I have now" attitude often breeds cooperative clients and sometimes
even fanatics. A cooperative and committed user does not guarantee a successful
project, but without some support from the user, the project is doomed to fail. The
earlier his conunitment is generated, the easier the development will be.

4. Strategic DSS Development
Sprague and Carlson expanded on the concept of focusing on one key decision

and divided DSS into three technology levels: specific DSS, DSS generators, and DSS
tools. The level that actually accomplishes work is the specific DSS level. This is the
final product that serves the user's needs. Specific DSS's are built from other levels,
either from generators or tools. The lowest DSS level is that of tools. Tools facilitate
the development of either Specific DSS or a DSS generator. A DSS generator is a
collection of tools or capabilities. [Ref. 2: pp. 10-121

When developing a DSS several approaches can be taken. First, tools can be
developed with no specific DSS in mind. These tools can then be integrated to build a
DSS generator. The generator can then be applied to several different specific DSSs

30

as applications arise and are implemented. New tools can be added to give the
gnerator more power. This approach is expensive and tangible results are slow in

developing. Careful planning and extensive analysis is necessary to insure the proper

tools are available when a DSS application arses.

The other approach focuses on a specific DSS, acquiring the tools needed to

build that specific DSS's. These tools can then possibly be used for other specific

DSS's within the organization. A generator is then created indirectly by combining

tools. A generator does not evolve until several specific DSS's are developed. Building
a specific DSS is the preferred method because immediate results can be seen quickly

and at a relatively inexpensive price. Subsequent specific DSS development is not as

simple as it would be if a generator already existed.

5. Tactical DSS Dvelopmut

Depending on environmental factors (such as the organizational structure, the

tasks, the users, and the builders) three different tactical options are recommended by
Sprague and Carlson [Ref. 2: p. 601:

I. The quick hit. If it is not clea that general DSS capability is needed. b t
thre is a recognized highpayot area for decisign support, develop a Spec. ic
Ds. directly using the most appropriate tools, capture the benetits, then
consider what to do next.

2. Ile sgu tae, elopmetaapproaci.. Buid ope .Lq DSS, hut with some
avsMc Dp rM&;.so t ut - rt ot teefft m ine-we opn fi trst system can

oere e m.p 11n, opt N .euon wtm a 4 prLtt plaxjn^ tJ
generator evolves rro "eeetopment of several ccessve speciMcDSS .

3. The complete DS4. Before building any specifc DSS, 4evelop a full-serviceDSS generator, and the organizational structbre for managing it.

The staged development is recommended because it is the most balanced approach of

the three. Results can be seen quickly and future DSS development is planned, which
is usually less expensive than building a system without any planning.

6. A DSS Action Plan

Planning is the key to success in any endeavor, and design of DSS is no

exception. Sprague and Carlson [Ref. 2], have identified four phases of an action plan.

These phases do not conflict with the iterative, simultaneous design and
implementation of DSS. Rather. they provide a f'ramework "or the design of additionai

DSS. The four phases of the plan are [Ref 2: pp. 67-681:

I. Preliminary study and feasibility assessment.

2. Development of the DSS environment.
3. Developing the initial specific DSS.

.4. Developing subsequent specific DSS.

31

,," , '+ €, ,;' ',.,;.- ; ' ,<, ..': , '- .:' -, d/': ' .* ;". "' " "t *,,*-.*."';-'".'.*:**'

The preliminary study and feasibility assessment are the same as in the

structured methodology. Once a problem is identified, a feasibility study is needed. In
fact, this study can be initiated prior to the knowledge that a DSS is necessary or
desired, in response to a particular problem. During this preliminary study, pilot

projects can be implemented to ascertain DSS needs. These pilot projects can also help
find the project for the first specific DSS.

Phase 2 forms the DSS environment. A minimal set of tools are either
developed or purchased with a plan for creating a DSS generator. The initial specific
DSS design and implementation can then begin. 'the specific DSS should be in a
highly visible area that has observable benefits. Tools can be updated or added as
necessary.

In the next phases the specific DSS is designed and implemented in an
iterative methodology. Upon completion of the initial specific DSS, other DSS's can
be developed. The second DSS should be related to the first. For example, duplicating
the same system for another division with a different group of users would probably be
easier and yield a quicker payoff than developing an unrelated system [Ref. 2: p. 671.
In practice the initial DSS does not have to be completed prior to the start of phase 4.

7. ROMC
Another technique Sprague and Carlson introduced was the ROMC process

[Ref. 2: p. 96]. ROMC is a process independent approach for identifying the necessary
capabilities of a specific DSS by focusing on Representations, Operations, Memory
aids, and Controls. The representations help to conceptualize and communicate the
problem or decision situation. They identify what the user actually wants to see as
output to make better decisions. Operations allow the user to analyze and manipulate
those representations. They allow the user to integrate the representations desired into
the decision maker's style. Memory aids assist the user in linking the representations
and operations together. A data base acts as a memory aid by presenting different
views, profiles, libraries, or by acting as a trigger that reminds the user that certain
operations need to be performed. Control mechanisms handle and integrate the entire
system. Control mechanisms allow the decision maker the use of the system in a way

that conforms to a particular user's decision style. Menus, training, and some
operations make up the control mechanisms for a DSS.

32

re'.'. , ..,.. :,.,.'.:.: ?.;.,,,,,' ,.,,? ;..." ,,..,...' : ,"-.; ,? ,,-.,:;-: : ,'.. ?; ;..'-.-.: ,. '_%,

C. AREAS OF DESIGN

The design must also cover three almost separate areas jRef. 1: p. 181):

I. the 'user' design, defied in terms of theimperatives,

2. the interface or driver which links them, and

3. the data-base management design.

Each of these areas must be addressed in the design phase.

If user design, the data base, or the interface is ignored, the consequences could

cripple further DSS development. When the user's needs are not fully addressed, he

will not use the system. Neglecting data base management results in the necessary

information not being available when needed. If the driver system which links all of

the modules for the entire DSS is not designed properly, then the system cannot

function as a coherent system, even if all its parts work perfectly.

I. User Design

The user design is the logical design of the system. This develops the tools
that form the DSS. The developers must have a clear understanding of what the user's

needs are, and ensure that these are addressed in the system design. That requirement

is no different for DSS development than for MIS development. The difference is that
it is critically important for DSS. Unlike an MIS project, you can not make do with a

system that meets only part of the user's requirements. It either meets those needs and

is used, or it is not used.

2. System Interface

A driver inks the :ools into a usable system. Almost all known DSS s ise

some version of command-driven approach for user interaction [Ref. 1: p. 1811. This

allows fle-ibility and ease of use. It also nurtures the learning process about the types

of decisions that can be addressed.

Flexibility is necessary in a DSS because of the unstructured tasks it is
designed to perform. The ad hoc capabilities, that have been the hallmark of DSS over
the past decade, can only be accomplished through the use of command driven

systems. Systems "vftch are 'iruted only to menus, do not have :his le',hliit'.' -he

designer cannot think of every possible combination that a decision maker may want at
some future time. Even if all possible combinations are known, the cost of

implementing them in another form other than through a command language would be

prohibitive.

33

3. Data Ban Manage eit

Data-base management is of prime importance. Almost all DSS's are centered

around a data-base system. The data base contains the information that the decision

maker needs in order to make better decisions. The data base constitutes the

capabilities of the entire system. The information that must be in the data base needs

to be identified early in the design process.

Having a data base prior to the building of a DSS simplifies the design of the

DSS. The functions that the DSS has to deal with are lessened. Most data base

problems can then be discounted or at least simplified. The collection and

maintenance of data used by the DSS may already be accomplished. Most data base

management issues will be resolved, such as integrity and security. An added benefit is

that the chances of different specific DSS's sharing data increases. [Ref. 2: p. 2231

Data can be obtained from many sources. A DSS must be able to aggregate a

variety of information. Data can be extracted from a data base whether in house or

from outside sources. The DSS is then able to manipulate data from several sources,

and format it into useful information for the decision maker, without affecting the

source data base. Data extraction, taking data from one data base for use in another.

allows source data files to be organized for efficient data entry, update, processing,

output, or protection, without additional indices or data to support the DSS [Ref. 2: p.

248).

The original data base management system can be used for the functions for
which it is best suited. Indices and data for the DSS are stored separately from the

original data base, within an extracted data base. This prevents degrading the

performance of the original data base.

D. ENVIRONMENT

I. Attitudinal Direction and Requirements

The initial implementation using the iterative development approach is most

effective in a computer resource environment that is both centralized and decentralized.

and having slack resources for research projects. [Ret" 1: p. 231. The Centrailzed

aspect of the computer resource must be at the lower tier, providing controls over the

system through well structured procedures. The decentralized aspect of the computer

resources provides an environment that is more attuned to experimenting, and research

and deve!opmeni. Slack is also necessar" because the DSS changes the oreanization_'

3.1

L * - * * * , ~ .~* ~ * ~.~

emphasis from efficiency to effectiveness. An increase in effectiveness is usually

attained at the expense of efficiency. Extracted databases, modeling, and other

computer manipulations and displays can greatly decrease the efficiency of an MIS.

This new DSS application should be classified as R&D until it becomes an integrated

system. The slack resources cushion the inefficiencies of a DSS development

preventing a drain on resources from other areas.

2. Devlopmntal Requirements
Iterative design is the key to DSS design. The evolutive approach is a

methodology based on the progressive design of a DSS, going through multiple, as

short as possible cycles. Successive versions of the system under construction are then

utilized by the end-user. The steps in the process include [Ref. 2: p. 139-140):

I. Identify an important subproblem.

2. Develop a smal but usable system to assist the decision maker.

3. Refine, expand, and modify the system in cycles.

4. Evaluate the system constantly.

These steps reiterate the previously mentioned design criteria expounded by both

Keene and Morton. and Sprague and Carlson.

Selecting a problem with a high probability of success is paramount in DSS

design. When a small system works and the contributions of a working DSS system

can be demonstrated and observed first hand, the product sells itself.

3. DSS Prototyping

'The most successful installation technique is prototyping' [Ref. 2: p. 155].

Prototyping provides lower risks in the development by controlling excessive

expectations. By actually demonstrating the feasibility, the user can see the actual

benefits a system may have. With a created working system, the developer has

concrete facts on which to base further DSS feasibility.

4. User Education
User involvement in any system development is important, and the iterative

nature of DSS makes it doubly so. To insure the user sta's involved and that future

users can get involved, proper procedures for training must be implemented. L ser

education on a DSS can be in three forms [Ref. 2: p. 153]:

I. A one on one or tutorial technique.

2. User courses, lectures. or professional development seminars.

Res.dent expert assistance when needed.

35

This education must begin at the early stages of development. This will ensure the user

can benefit from the system.
A one on one tutorial is the most common and expensive training technique

[Ref. 2: p. 154. The use of training courses and seminars is another common method.

An expert, either internal or external, can instruct users at all levels of the

development. The expert, acting as a consultant, is a passive version of the tutorial

technique. Different combinations of these techniques can be developed. The main

lesson is: user education must be included in the design. This insures that those who

can benefit from the use of the DSS have the ability and skills necessary to do so.

5. Support for DSS

Factors which increase the likelihood for success of a project are top
management support, a clear felt need by the client, an immediate, visible problem to
work on, an early commitment by the user, a conscious staff involvement, and a well
institutionalized OR MS or MIS group [Ref. : p. 196]. Support from top
management greatly enhances the acceptability of any new project. Employees are
more willing to support the development effort if they think it is a good idea. If top
management is not supportive, or is hostile, others will be less likely to accept or even
give the project a fair trial.

L FINAL WORDS
Gad Ariav and Michael J. Ginzberg [Ref. 91, further define the three functions of

a DSS first expounded by Keene and Morton. Figure 3.1 fists the components of a
system which Ariav and Ginzberg think are necessary in order to have a DSS.

The first component, dialog management, is broken down into user interface,
dialog-control and request transformer. Without each of these subcomponents the

dialog management system is incomplete. Data management, the second component,

is subdivided into the data base and data base management system, a data directory, a
query facility, and a staging and extraction function. Finally, the model management
system is partitioned into a model-base management system, model execution,

modeling command processor, and a data base interface. These subcomponents define

the complete DSS.

Ariav and Ginzberg [Ref 9], looked at the basic resources of a computer system:

hardware, software, people, and data. They found it is only after the DSS has been

designed (after the components and their 'ideal" arrangement have been selected) that

36

1. Dialog Management

1. user interface

2. dialog-control

3. request transformer

2. Data Management

1. data base and dbms

2. data directory

3. query facility

4. staging and extraction function

3. Model Management

1. mode-base management system

2. model execution

3. modeling command processor

4. data base interface

Figure 3.1 DSS Components (Functions).

resources should be considered. [Ref. 9: p. 1049]. The solution should drive the

selection of a system, the system should not drive the solution. If the arrangement is

set prior to design, the options of the design are greatly hampered and creativity

styrmied. The designer must design a DSS based on the solution to a problem.

Ariav and Ginzberg [Ref. 91, divided software into four types:

. General-purpose programming languages.

2. DSS tools.

3. DSS generators.

4. Generalized DSS.

These types correspond to the technology levels of DSS from Carlson and Sprague.

General purpose programming languages provide only limited leverage for the

development of a DSS. Tools are already available and are usually cheaper than

reinventing the wheel. DSS tools provide only a single function, but as a group can be

the building blocks for a DSS generator. Tools only address one function of DSS and

37

/,

"N" .4 . .

need to be integrated into a system. DSS generators are a collection of DSS tools but
are tailored to one specific problem. For example, the DSS generator IFPS deals only
with financial problems. Generalized DSS can support a class of problems. An
example of generalized DSS would be a PERT/CPM system.

The design of the DSS should be independent of the software as well as the other
components. This is known as an outside approach. An outside approach provides
that the selection of components and their arrangement (the inside), must follow from
an understanding of the environment and the role (the outside) [Ref. 9: p. 1051].

The last author and noted authority on DSS that should be looked at is George
P. Huber [Ref. 10]. Huber [Ref. 10: p. 2501, states that a DSS is a system specifically
developed to carry out some of the decision making information processing. This
definition, although vague, shows the trend for DSS's toward an increasing direct
decision making influence. A DSS allows decision makers to make use of the data
that other technologies are making more and more available. There is indeed an
information boom as we move into a service oriented society from an industrial society
[Ref. 10: pp. 250-2521. This trend, as well as the advances in technology, has provided
the decision maker with more and more information. The role of the DSS is the
aggregation and summarization of all the pertinent information that is available from
all sources. A DSS allows decision makers to make use of the data that other
technologies do not.

38

*,r. ". - ". . "

IV. METHODOLOGY

A. INTRODUCTION

The methodology we followed was a task organized approach. We chose our

methodology as we proceeded based on our particular situation and constraints. This

approach to DSS's was a semi-structured one, which is fitting since DSS is supposed to

help solve semi-structured problems. The project had a purely R&D attitude, with a
useful product as a possible side benefit.

Throughout this thesis we refer to our system as a prototype. A more precise

terminology may be pilot project. Our intent is not to initiate a DSS but to 'test the
waters" to see if an environment suitable for a DSS exists. Our intent is to:

1. Test a methodology based on a semistructured, task organized approach.

2. Determine if a suitable environment for further DSS development is present or
can be established.

3. Determine the next step for future DSS development, if appropriate.

4. Provide the shipyard with a usable, user friendly system involving control and
graphic displays.

Since our approach in determining the environment revolved around a methodology for

the development of a DSS, we refer to this system as a prototype.

Many constraints, from hardware to software, were introduced. The shipyard
already had a mainframe computer, several minicomputers and microcomputers, with

more micros on order. That level of prior hardware investment and the nature of our

project required our system to operate on the existing hardware. The minicomputer

application was chosen because of the number of terminals connected through the

shipyard network and available to all managers.

Additional constraints involved software. No new software to support the
prototype was planned. Therefore, the first order of business was to learn the existing

system's capabilities. The software we originally focused on included CPL. the

Command Processor Language for the Prime minicomputer, the Supercomp

spreadsheet program, and TEL-A-GRAF, a business graphics package that was

recently purchased by the Shipyard.

39

B. ITERATIVE DEVELOPMENT

The major theme throughout the literature on DSS development is the use of an

iterative approach, which was central to our methodology. It provided flexibility

because it allowed us to combine the design and implementation phases through the

building of a prototype system. Since this development strategy results in a rapidly

produced prototype, it should not be construed to represent a complete production

model DSS. This effort merely introduces the concept of DSS within an organization

with no prior development experience in this area.

The iterative approach calls for rapid succession of the system development steps,

with redefinition of each step on subsequent iterations. Our only strict exit criteria was

the prototype. We set no limits on the number of iterations, nor did we expect to have

a completely functional DSS at the end. Our expectation was to have a useful

prototype that could demonstrate one small contribution a DSS could make, and to

give direction to further DSS development within the shipyard.

I. Problem Definition

The first step in any new system is problem identification and definition. The
Coopers and Lybrand study outlined several problems common to most Naval

shipyards. The focus of our project centered on one set of issues: the budget system

for the shipyard. This project was focused for one division, but is easily expandable

shipyard-wide as the prototype matures.

In addition to the Coopers and Lybrand study, the Mare Island Naval

Shipyard Information Resource Management Plan [Ref. Ill, outlined the need for a
shipyard-wide DSS. This perceived need for a DSS and the desirability of the budget

system being a part of that DSS, placed a two-fold goal on this project: provide a

system to improve managerial control of the budget and expense, and to introduce the

concepts and capabilities of a DSS to the shipyard.

Keen and Scott Morton refer to a 'diagnostic perspective." Designers need to

be sure that "they understand the realities of the decision situation... they need a
descriptive model as the basis for identifying a normative direction." [Ref. I: p. :T]

Although our system is smaller than the DSS that the authors were describing a
strategy for, aspects of the areas they felt must be addressed will be identified and

explained. The most applicable areas are the "organizational procedures view, the

political view and the individual differences perspective." [Ref. 1: p. 63]

40

Ir 'r 0 lt 'l _

The organizational procedures view is articulated through the use of the

structured techniques of analysis. The structured specification outlines the flow of

data, the processes or procedures that manipulate the data, and the storage of data.

The data dictionary seeks to define the data elements identified during the data flow

analysis. The structure chart shows the development of the system design to meet the

requirements of the organization's operation. This effort is the structural approach

practiced in present systems analysis.

The political view is approached less formally in systems analysis. It is not

explicitly documented in our analysis, but has tempered our considerations and to a

degree, the direction of the development effort. For example, working on a project

within the Comptroller Department was not possible because of their current concerns

with the SABRS project and our inability to identify definite gains or improvements for
SABRS, as an outgrowth of our project. On the other hand, the degree of support
available within the MEIO Department caused us to devote our initial efforts to them.

The individual differences perspective has some applicability to this project.

Since our prototype was developed with inputs coming from only two individuals. we

easily reconciled any particular differences between them. A larger development effort

within the shipyard would require additional efforts to meet the needs of a wider

spectrum of managers' styles.

2. Structured Techniques
We required that the system we developed be as maintainable as possible.

The adherents to the structured methodology claim that fact; therefore, we were

convinced to include the method where possible in our development. Many
proponents of DSS might disagree with this decision. Sprague and Carlson point out

that "DSS are,... ,research efforts, not DP projects, and therefore not well suited for

traditional project management procedures.' [Ref. 2: p. 138] We would agree up to a

point. DSS are transactionally oriented processing systems and therefore the discipline

imposed by the structured techniques are still applicable. In addition, we did not have

the luxury of being in close proximity to the users or the programming environment.

These constraints required that we use a methodology that produced clear and

understandable documentation, and also required minimal correction of the code.
We took the structured approach to analysis and design, relaxing the ending

and exit criteria. The structured methodology was used for the analysis because we felt

the approach of Keen and Scott Morton was not rigorous enough in identification o" a

41

clear approach to the description process. It would not produce the documentation

which we believe is essential to the clear understanding of readers and follow-on

implementors. Additionally, the documentation produced would be textual. A textual

description would not have been as clear, and definitely not as concise, as the

structured specification.

a. Feasibility Study

If we had been closely following the structured analysis and design

approach, the next step after problem definition would have been the feasibility study.
Since a prototype system is an example of a technical feasibility approach, and no

further systems purchases were considered, this step was not needed.

b. Analysis and Design

The next step was analysis. Our analysis took us in two directions. The
budget system within the MEIO department was one area that was investigated. The
other area dealt with the hardware and software that had already been selected. We

were not familiar with the hardware nor the software. Hence we had to learn both the

budget system and the computer system simultaneously. At this same time we began
the system design. We used structured techniques to graphically map out the system.

These preliminary designs were actually completed before the analysis.
The descriptive analysis we conducted corresponds to the Predesign Cycle

suggested by Keen and Scott Morton. We attempted to build 'momentum for change
and developing a 'contract' for action..." in order to foster the initial climate for

change [Ref. 1: p. 1731. The output of this approach is to produce a normative model

for the present system and design the DSS in response to that [Ref. 1: p. 174]. The

'degree of change" proposed by our design is not large because of the nature of our

project. This approach was necessary to minimize risks and resource requirements.

To assist in this design, we followed the ROMC method introduced by
Sprague and Carlson [Ref. 2]. We started at R, representations, and developed three

main graphical representations. Several graphic displays of these representations were
identified. We developed these graphics by focusing on one manager, a decision maker

in the MEIO department. This helped us to narrow the analysis to a workable scope.

Other representations were also considered, such as comparisons between budget and
expenses in column form. We decided that most of that information already existed on
their present reports, although not in an on line mode. SABRS was to give the user
this capability when operational. We decided to concentrate on areas that were as vet

42

not directly addressed by the current MIS efforts. One other representation considered

was the spreadsheet. A spreadsheet could give the user limited "what it capabilities.
We decided that the initial prototype would contain only the graphics in an easy to

use, menu driven system.

The next step in ROMC is the Operations. For our prototype system the
operations centered around the graphic display of the data. It included selecting and

displaying desired budget and expense information. The Memory aids for our initial
system focused on the menus of the system. Finally, the Controls for the system are

also handled within the menus at this preliminary stage.

At this point in the development, the analysis of what we considered a
solvable problem was completed. This problem was also considered to be of value to
the shipyard. The budget problem made the expansion of the system to other
departments and to the Commanding Officer of the shipyard a likely second specific

DSS to pursue.

The preliminary design had been completed. The structured specification,

consisting of data flow diagrams, data dictionary and structure charts had been
completed. The detailed design was already begun. Basically, the simplicity of this
initial system allowed us to combine these two structured steps and do them

simultaneously with the analysis.

c. Implementation
The coding and implementation was then begun. This was done iteratively

with revisions coming mostly through the designers. Initial graphics were completed

on an IBM mainframe at the Naval Postgraduate School and then reentered on the

Prime minicomputer when on site. This was done solely for the convenience of the
authors. The geographic separation of the implementation site and the developers
prevented a more interactive approach. This did have an effect on the timing of

iterations, which caused the project to take considerably more time than initially
planned. A helpful capability we had at our disposal was that we could interface
directly with the shipyard's Prime minicomputer, and we authored most of the driver
programs from out remote site. Some of the graphics programs were also entered from

the remote site, but they could not be completely tested. The terminal used to
interface with the Prime computer was a Convergent Technology's C-3 terminal and

software, which was not suitable for the graphic displays produced by the TEL-A-
GRAF programs.

43

When a skeleton working system was completed, we began a similar

implementation on a micro. The micro system was developed for an IBM compatible

XT or AT. Four reasons justified this effort. First, the trend toward personal

computers in the work space is prevalent in all industries. Second, the shipyard just

purchased several IBM compatible Zenith PC's. Third, the same analysis and design
were used to code and implement the system on the PC. Fourth was our desire to

quickly implement our data base design as a model of what could be developed on the

minicomputer system.

These efforts confirmed the generic design of the system, which was one of

our goals. We strove to design a system that could be generically implemented on any

system having the appropriate capabilities.

When coding and implementation were completed the testing of the system

was accomplished. Additional graphics were added to complete the final prototype.

From this prototype, the direction of the future DSS development can be determined.

3. Data Base Development

The data base is the central focus of our proposed DSS. Further, an
understanding of the data flows in the budgeting process helped us as analysts to know

exactly what data were important to this system. Sprague and Carlson identified data
base management as 'an important prerequisite to a DSS..." [Ref. 2: p. 222].

Although we have not incorporated data extracti6n capabilities into our design, we
would agree that a clear understanding of the data involved, and a method of

manipulation of that data, is important to the design of any system.

This aspect of the system did not concern us directly. However, we did
identify the data that would be needed for the initial DSS. The source of this

information was also identified: the reports that the shipyard was already producing.

The MIS department agreed to handle the data extraction, and we proceeded on the
assumption that the data would be available in the format we desired.

The data base design efforts for the microcomputer prototype involved the
relational data base methodology. Our primary reason for selecting it was our
familiarity with it. In addition, it allows a great deal of flexibility to shift between
logical and physical design. The relational design can also be readily applied to other
methodologies. The fact that the particular relational data base management system
available to us, for the microcomputer implementation, was also bein installed on the
shipyard's Prime network, further influenced our decision.

44

For our initial system the required data consisted of only expense data and

budget data, which were already available. However, no historical record was kept

electronically as the data tapes were overwritten about every two months. It was

realized that an historical data base would need to be kept for a flexible DSS. This

requirement made the choice of the minicomputer for the system even better due to the

volume of the data necessary for such an historical data base. We also realized that a

shipyard-wide DSS would need a flexible data base management system. Although the

initial implementation would only need a simple DBMS, the backbone of an overall

DSS has to be the data base system.

In the future we foresee the mainframe and the minicomputer becoming more
of a data repository and less application oriented, as the microcomputers become more

pervasive within the shipyard. 2 This trend would allow the decision maker to

manipulate his own data base on his PC, and allow him to update or reinitialize his

data base from the master file on the minicomputer.

In actual use, this data base must at least be compatible with the data base on

the minicomputer. We further recommend that the two data bases have similar

command languages, to avoid a situation where managers and users, have to learn two

different systems. Compatible data bases would simplify the sharing of data and data

extraction.

2 Interview with Ronald Munden, Manger MEIO, Mare Island Naval shipyard,
December 10, 1986.

45

L OIL-

• , • m -. " - ", . = ' l o ," l .p • ," "o| " f • i

V. PRESENTATION OF THE PROTOTYPE RESULTS

A. REQUIREMENTS DEFINITION
1. Cost Center Analysis (Minicomputer)

Cost Center Analysis (minicomputer) was developed for the Prime 9755
minicomputer. This system operates under the PRIMOS operating system and

employs the Prime Command Processor Language (CPL) as its development language.

The prototype is made up of several small programs, based upon the system

structure chart, in Appendix A, developed during the analysis portion of the project.
Sub-programs rather than sub-routines were used because CPL does not allow the

passing of parameters from sub-routines to calling program.

Differences between the modules of the structure chart and the actual
programs written were the result of three factors. First, the goal when we developed
the structure chart was to reduce the modules to their functional primitives. CPL has

several constructs which combine some of the functional primitives. Therefore. it
would have been inefficient to strictly follow the structure chart during actual coding,

developing each module as a separate entity.

Second, the interface to the spreadsheet was determined to be time infeasible
due to the nature of the spreadsheet's method of control. This was especially true in

light of the fact that this was not a critical implementation to the users. The

spreadsheet requirements could more effectively be met using SABRS. Developing the
interfaces to SABRS would have been outside the scope of this initial project;

therefore, it was not included.

Third, the project was originally designed to allow the user to develop his own
data and include files for TEL-A-GRAF while still in CCA. The resulting loss of

control, an inability to ensure the user developed standardized files, caused us to
eliminate that capability. However, the flexibility required for ad hoc queries is still

available within the system. This eature is provided through the TEL-A-GRAF

command language.

a. Module descriptions and functions

The structure chart depicted in Figures 5.1, 5.2 and 5.3 graphically
describes the interrelationships between the following program modules.

46

, 16 , - .

m.6

Opii

Ia

Figure 5.1 Structure Chart of CCA (minicomputer).

47

(1) Prepare Reports (PR.CPL). This is the top level program driver of the

system. It calls the subprograms to produce the top level menu, accepts and then

validates the user's response, and selects the appropriate subsystem or ends the session.

Thus, the system is transactional in that the particular subsystem selected is based

upon the user's response.

(2) Display Menu (DT..CPL). This is the program that displays the top

level menu.
(3) Call Tel-a-graf (CTEL.CPL). The major sub-program of the system,

this allows the user the option of selecting standard report formats and nonstandard

ones. Depending upon the user's selection, it will call the appropriate sub-programs to

implement the desired graphic report.

(4) Manipulate TEL-A-GRAF (MANTEL.CPL). This program calls the

sub-programs that allow the user to select the Cost Center Code, Plot Code, Plot

Options Code, and finally open TEL-A-GRAF. The Cost Center Code determines the

particular Cost Center to be studied. Plot Code allows the user to select the type of

graph he wishes to produce with TEL-A-GRAF. The Plot Options Code controls the

level of detail that the user wishes to select.

The modules that select the codes are very similar in structure. We will

explain the sub-programs to select the Cost Center Code. The other codes are selected

in much the same way. Select Cost Center (SCC.CPL) calls Display Cost Center

(DCC.CPL) and assigns the value of the function Validate Cost Center (VCC.CPL) to

the variable. That variable is subsequently returned to Manipulate TEL-A-GRAXF

(MANTEL.CPL). Display Cost Center provides the user a menu of the Cost Centers

available for analysis: that number is one for this initial project, but could be easily

increased in subsequent versions. Validate Cost Center requests, gets, and validates the

user's response.

(5) Open TEL-A-GRAF (OPTEL.CPL). This determines the data files

and include files to be used by TEL-A-GRAF, and calls the routines that actually open

TEL-A-GRLAF for the user. Data files are those that actually contain the data to be

graphed. Include files are essentially programs written in a -structured English" that

TEL-AGRAF uses to build the desired graphs. Open TEL-A-GRAF uses the

combination of the Cost Center Code, Plot Code and Plot Options Code to make the

determinations.

48

Figure 5.2 Continued Structure Chart of CCA (minicomputer).

491

W, r w

Got Valid

TEL-A-GRpAF

MmMenu Valid Menu

Figure 5.3 Continued Structure Chart of CCA (minicomputer).

(6) TEL-,-GR,-F Interface Programs.

Six sub-programs actually open TEL-A-GRAF. One allows the user
to make free form input to TEL-A-GRAF (FREE.CPL). This would be for those users
who had become somewhat familiar with the TELA-GRAF constructs and wish to
implement graphs which they design. A second allows the graph to be constructed
from one data file and one include file (SINGLE.CPL). The third (DOUBLE.CPL) is
used for graphs which have an inset graph, and therefore requires two data files and
two include files. The sixth (DOUBAR.CPL) is designed to produce a bar graph which
requires one data file but two include files. In order to produce a graph with a bar
chart insert and line graph, the fifth (TRIPLE.CPL) is used. (TRII'LE.CIPL) requires
two data lies and three include files, the extra include modifies the plot. The sixth
(QUAD.CPL) allows the user to develop a composite graph made up of four
subgraphs. It requires four separate data and four separate include files.

b. Usabiltj,

This system was designed for users needing an information display
capability through high quality graphics. In this case the graphics system's conmmand
language was difficult for the average user to learn. The shell provides them with the
ability to quickly produce the information displays that they require.

The system is designed in such a way that the users only minimally interact
with TEL-A-GRAF. In that way they learn the structure of the command language
and gain confidence in their abilities to control TEL-A-GRAF. As they gain

50

-' '. ,,, ' ' ,,' .. ,'; €.I .'% -,.., ,. _.'-','/./ .'..' .._ . " ."'.- .." " " ". " -•.'.'
• : : -.' " r , _ -' -* .- ./ t41,C ~ ' .'- " w , ," ': '. " - -' "-y "-' ''," " . '.' ., ' , "" "" "'. ' ,* I

experience, the system allows users to begin to develop their own TEL-A-GRAF
command language programs and their own data fries.

The advanced user could use the system as a refresher when away from it,
or possibly to work out a problem that puzzled him. It is not likely that he would use
it to any great degree, however, since it would "usually be quicker to go directly into

TEL-A-GRAF on his own.

c. Expandability

The structured design of the system allows for easy expandability.
Subprograms can be added or deleted, usually with a one line change in the calling

program.

The range of changes could include interfacing with additional systems such
as a spreadsheet, statistical program, or SABRS. Additional Cost Centers could be

added very easily. The only limiting factor would be to provide the data files. This
could be circumvented by using a data base management system that would produce
the data files, and then an application program which would format them for TEL-A-
GRAF. Additional graphic displays could be provided by merely developing new

include files and providing the user interfaces to select them.

d. Reliability

CPL is an excellent development environment providing many built-in

error trapping routines. It was simple to provide validation of all user inputs requested

by the system. The language is also easily applied, thereby further reducing the

chances for errors.

The structured approach used to complete the design clearly presents the

proposed system. Programming problems were quickly identified and fixed. It allowed

us to have a clear idea of what we were doing while coding, much as an outline does

for an author. This further protected us from logic errors.

e. Integration of tools

The only tools available to this development effort were TEL-A-GRAF and

CPL. TEL-A-GRAF is a very powerful tool. but it is difficult ror the average user to

manipulate. This situation forced one of us to be dedicated to the development of the

required graphs. That effort exceeded our time estimates due to the complexity of the

TEL-A-GRAF command language. On the other hand, CPL, a programming language

written specifically for Prime minicomputers, exploits the hardware to best advantage.

51

A X k)

The integration of the two environments was accomplished by building a

shell around TEL-A-GRAF that would allow the average user to make use of menus

to produce desired graphs, rather than use the TEL-A-GRAF command language.

f' Problems

Due to our initial lack of understanding of the importance of the data base,

this system was built with a file management orientation. It is now obvious to us that

this approach was in error. The system should have been built around a data base

management system. This would have produced a more flexible system.

Geographic separation from the users during the development increased the

difficulties. Close coordination with the users was then not possible, and resulted in

misunderstood requirements and goals. We only had access to the development

language via networking over FTS lines, which at times became unusable due to noise.

In addition, the version of TEL-A-GRAF locally available to us was not directly

compatible with that available at the user site. Consequently, last minute changes were

required before demonstrating to the users.

A major limitation of CPL is that sub-routines can not pass parameters up
to a calling procedure. Thus most 'atomic' routines had to be programs. This resulted

in many small programs making up the system. Although this was not a problem for
us, it could be a problem for the users and those who will maintain the system.

2. Cost Center Analysis (microcomputer)

a. Introdsction
This system was developed to address the most critical problem of the

minicomputer implementation, the lack of a data base management orientation. In

order to develop a system that allowed easy data maintenance, it became apparent that

a file management application would not be effective for an historical data base. This

version is integrated with a DBMS in order to provide the easy expandabiity which

would be beneficial to the users.

Originally, this was to be a concurrent development of the Cost Center

Analysis system. Therefore, there was no consideration given for compatibility of the

'micro" development language with the 'mini" development language, C and CPL

respectively. They were to address two separate development issues, and the language

used for each was irrelevant to the efforts.

The design of the data base is relevant to each since it could be applied to
either system. Oracle was therefore selected as the DBMS because it is available ftr

52

-.-..-

microcomputers, minicomputers and mainframes in general, and in particular is
scheduled for implementation at the shipyard on the Prime network. This will provide

the users greater flexibility.

b. Requirements

Cost Center Analysis (microcomputer) hardware requirements are an IBM
PC/XT/AT with at least 640KB and a hard disk. A printer is optional for the output

print options.

The software requirements are the Oracle Data Base Management System
(DBMS), PC/MS-DOS, and the Cost Center Analysis and Graphic Utilities programs,

all installed on a hard disk.

c. Mfodule description and fwuctions

The hierarchy chart depicted in Figures 5.4 and 5.5 graphically describes
the interrelationships between the following program modules.

(1) Cost Center Analysis. This main module contains the three major sub-

modules of the system:

1. Cost Center Information

2. Command Level Entry
3. Graphics Displays

It provides the interface for Oracle and graphics. It also allows easy

access and display of Oracle.

(2) Graphics. This module allows the user to use already developed
graphs with data not obtained from Oracle directly, but input to a file by the user.

Oracle can also read specified data into a file form within the Cost Center Information

module. This data can then be plotted from within the graphics module.

(3) Command Level. This allows the user the opportunity to use Oracle at

the command level, through the User Friendly Interface (UFI). Ad hoc queries,

updates of the data base, deletions, insertions and other procedures can be

accomplished in this mode.

(4) Cost Center Information. This is the main menu driven shell for CCA.

It allows easy access to specified information and display of that information. CCI

also sends specified data to a file for the graphics routines to use.

(5) Budget VS Expenses. This allows display and comparison of budget
and actual expense information by various categories, and interfaces data with

graphics for further displays.

53

.... ~t

CL

0

n0

c

0

5,C,

Uj'U

CL E

CL,

CL

aU

CL,

00

Figure 5.4 H ierarchy Chart of CCA (microcomputer).

54

(6) Individual Display. This module displays budget vs expenses to date in

thousands of dollars for either Labor, Material, or Other, sorted by Cost

Function/Cost Class.

(7) Budget Summary. This displays budget by Cost Function/Cost Class

for the current fiscal year.

(8) Display Labor. Budget vs expense by Cost Function/Cost Class for

Labor are displayed.

(9) Display Material. Budget vs expense by Cost Function/Cost Class for

Material are displayed.

(10) Display Other. Budget vs expense for Other costs by Cost
Function/Cost Class are displayed

(11) Total Budget VS Expense. This module sums Labor, Material
and Other for budget and expenses to date by Cost Function, Cost Class, Cost
Function/Cost Class and Cost Center as requested, and sends the information to the

graphics utilities when directed.

(12) Total by Cost Function. This sums budget and expenses to date

by Cost Function and displays. It sends the information to a file for graphing, upon

request.

(13) Total by Cost Class. This sums budget and expenses to date by

Cost Class and displays. It sends the information to a file upon request for graphing.

(14) Total by Cost Function/Cost Class. It sums budget and expenses

to date by Cost Function,' Cost Class and displays.

(15) Total by Cost Center. This module sums budget and expenses to

date for the entire Cost Center and displays. It sends the information to a file for

graphing upon request.

d. Implementation

The CCA system (microcomputer) is operational but not to the extent that

we originally hoped. The memory limitations of the PC prohibited us from linking

graphics with Oracle directly. To perform the graphics. extra commands must be

initiated at the DOS level. This was not the original intent. The system indirectly links
Oracle with the graphics, which still accomplishes our original goal.

The ezgree of difficulty in using C to drive both the graphics and Oracle
was underestimated at the outset of this project. Another limitation had to do with the

disk storage space needed to support all the products that were tied together. The

55

:E
E

0

EE
"I Z

0.

2 .

C)Cd

* S

Figure ~ ~ ~ 5. otne.iracyCato A(ircmue)

56)

system we developed this on was already heavily loaded with other systems and thus

hampered our development. This initial prototype system will allow the user a chance

to see what a final system coulc Io, and to further direct efforts in the development of

future prototypes.

e. Usability

This analysis system was primarily designed for the inexperienced or casual

user. They would be individuals, such as managers, who have not yet learned the

Oracle command language, SQL, or never intend to learn it.

During the analysis portion of this project we identified the information

needs of the users. Queries were written within the "shell' to specifically address these

needs. So, the average user is not likely to require ad hoc queries, at least in the short

term.

However, we have included the ability for them to handle unexpected or

unanticipated questions, or to make necessary data modifications. This ability is

provided by our system through the Oracle UFI. This interface does require using the

command language, since the user will no longer have the menu support of the shell.

Advanced users who would tire of the system menus could enter the UFI

through the top-level menu. Occasionally, they might make use of the system, but if

they know the command language they will probably enter the UFI directly.

fE &pandability

As mentioned, ad hoc queries are supported through the use of the

command language option. The Command language allows the user to interface with

Oracle via the UFI as described above. The user's manual (Appendix C) shows many

examples and possible approaches to retrieving information using UFI.

This system was designed to be used by only one Cost Center. However,

this is a prototype system that could be expanded to all Cost Centers within the

shipyard. To accomplish this, data base views of each Cost Center could be developed,

giving the manager, of a Cost Center access only to his own information. Higher

management could have access to all data as necessary. Only minor adjustments

would be necessary to implement this, namely inserting another module in the

hierarchy above the CCI module allowing the specification of a Cost Center,

combination of Cost Centers, or all Cost Centers depending on the access level of the

requestor and his interest. The specific views can be provided through the data base

management system. The amount of data necessary to support just one more Cost

57

- .. .~ A °?** ° • • b • ., %" ' i u '
"

. •' % . % Pi .. %

Center would, however, double the amount of data. This would not only increase the

storage requirements, but would also increase the information retrieval time.

g. Reliability

Any large program written in C is suspect when the question of reliability

comes up. The strange and wonderful things that C programs can do when errors

occur can be truely awe inspiring. However, painstaking error traps have been built in

to counter all known problems. Each input from the user is checked for validity.

Numbers are checked to see if they are in range and if not, the user is returned to the

same menu. The user" also has the opportunity to review his inputs to insure that the

value inputed, was the value he really wanted.

B. GRAPHICS MODULE

After we constructed the initial structure chart we exploded both main modules:

the control module and the graphics module. Then we began the detailed design of the

graphics module by following the ROMC approach [Ref. 21. The initial representations

were given to us by the user, who had been creating graphs for his own use on a

microcomputer using LOTUS 123. These graphs were time consuming to produce

because the data had to be extracted and inputed by hand.

The user wanted multiple graphs on one page which would summarize the data

more effectively. The first graph that he wanted was a bar graph of the budgeted

amounts for the Cost Center, broken down by Cost Function. On the same page with

that graph he wanted a plot of the budget versus the actual expenses as a function of

time (see Figure 5.6). This plot was applicable to either the total Cost Center or for

one of its Cost Functions.

Our methodology for designing the graphs paralleled the methodology we

incorporated in our DSS development: an iterative approach. These graphs were then

scrutinized and revised as necessary.

Most of the actual keying of the code was done 180 miles away from the

shipyard via telephone lines. The original coding iterations were done on the Naval

Postgraduate School's IBM 3033. befbre entering on the Prime. The School, like the

shipyard, has TEL-A-GRAF and the code is transferable between systems, with one

exception. The window sizes created for the graphs on the IBM were slightly different

for the Prime. Therefore, complete testing could not be performed until we actually

went to the shipyard. We could test for coding errors, by observing a run. but the

terminal we used to input the code did not support the graphics.

58

FY 86 GUDGET FOR
COST CENT 9110a

BUOGET VS EXPENSES
- l COST CENTER 9110

ALL COST FN
11 JULY 1986 0

-- 7

. , . -,7

I2 113 I14 MS "S IV 11 ft
CWTr ruimcom

-6

0
0

z
0

Legend -3

/ & 91JOGET

X(EXPENSE

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP
END OF MONTH

Figure 5.6 Composite Graph, Bar Chart and Plot of Budget VS Expense.

59

-. o- ." ,

1. TEL-A-GRAF

As our first step we learned TEL-A-GRAF, the graphics system that we would

be using. 'TEL-A-GRAF is a conversational computer graphics system that produces

publication quality charts and graphs [Ref. 12: p. A-3].'

The tutorial for TEL-A-GRAF [Ref. 12], walks the user through some simple

graphs. The command language is English-like and was easy to follow for the simpler

graphs. TEL-A-GRAF encourages the user to experiment when building graphs until

he gets the desired format; again an iterative approach.

A profile file tells TEL-A-GRAF which device the user is on, what his

secondary device is, and other facts necessary for TEL-A-GRAF to operate. If the

user does not have a profile file, TEL-A-GRAF will prompt the user for the necessary

information. For our system we wanted the control of TEL-A-GRAF to be

maintained by the control module. Therefore, a profile file must be established prior to
the use of this system for each user. A Sample profile ile that was used when

developing the system is shown in figure 5.7.

PRIMARY DEVICE IS TEX618.
SECOND ARY DEVICE IS POP.
SECONDARY EVICE UNIT NUMBER IS 1.
PAGE LAYOUT IS HRV.
ERROR REPORTING LEVEL IS 0.

Figure 5.7 Sample TEL-A-GRAF Profile File.

TEL-A-GRAF can be used on a variety of devices. The primary device refers

to the main device that the user wants to create his graphics on. When the commands

"GO." or "DRAW 1 2." are issued the graphics file is created for the device named as

primary device. If the command "SEND" is issued the graphics file created is for the

secondary device.

TEL-A-GRAF also has the capability of creating a device independent

graphics ile that can be used later on any graphics device, such as printers, plotters, or

I

other graphics terminals. This is accomplished through :he use of the Post Processor,

known as "POP". By naming either the primary or secondary device as 'POP", a device

independent file will be created. This file can then be executed later using the

DISSPOP command. Appendix B provides further information on the use of TEL-A-

GRAF.

The profile file can be changed while in TEL-A-GRAF at the command level.

When the generate prompt of TEL-A-GRAF appears, a device or value of a profile file

can be changed by issuing a command such as "PRIMARY DEVICE IS POP." This
command would change the primary device to the post processor for the remainder of

that session.

a. Composite Graph

Once we were familiar with the TEL-A-GRAF language, the actual coding

of the first graphs began. This was in itself an iterative process. The basics learned

from the tutorial [Ref. 12], and the specific requirements for these graphs were
aggregated to produce the finished product. Figure 5.6 shows the final graph for the

two initial graphs suggested by the decision maker. One of our main goals while

developing this code was to keep the graphics module independent. We designed the

graphics to run from a batch type mode. We assumed the data was in independent
files in the necessary format. This allowed us to concentrate on the display and not

worry at this point on how the data got to be in those files. This is a flexible
approach that will allow the shipyard to choose any data base system to complete the

implementation.
3

Each graph required a data file and at least one include file. The data file
contained the formated data as TEL-A-GRAF would accept it. Figure 5.S shows one

format that TEL-A-GRAF will accept. Other formats are discussed in Appendix B.

The include files contained the TEL-A-GRAF commands which set up the
graphs. The original include files contained the titles and labels for cost center 9110.

To change the title or labels to crqate a similar graph, a secondary include file was

created. This secondary include ile changed title and label line commands in the major

include file. This allowed the flexibility to create the same graph from different data.

These include files could also be called up by hand and changed line by line to fit a

different need of the user. This made the design of a modular system simpler. The first

-NWe recommend a relational data base for flexibility. The data will be discussed
in detail later.

61

INPUT DATA.
'BUDGET"

0 0 1 0.8035 12 9.64198
"EXPENSE"

0 0 1 0.92 2 1.59901 3 2.4567 4 3.34567 5 4.0002 6 4.78999 7--5.477 8 6.008 9.2 6.91127
N)?Lr12"DATA.

Figure 5.8 TEL-A-GRAF Data File.

include file contained the commands for a graph labelled for Cost Center 9110. If the
graph was to display a Cost Function, instead of the Cost Center, another include file

was needed to change the labels and title. When other Cost Centers are added to the

system, the same process will apply.

b. Triple Bar Graph

Once the initial graph was complete, we began the design of a new

representation. Based on our analysis, we determined that a bar graph which displayed

the total budgeted data, the budget as a straight line percentage of the elapsed Fiscal

year, and the actual expense to date would be useful. This is basically the same

information displayed in the original composite graph. However, we felt that this

prototype should offer a choice of representations to the manager. One purpose of a

DSS is to provide the decision maker with the appropriate information in a format

with which he is comfortable. This allows the decision maker to choose one of the

formats.

The same iterative process was Followed when creating the second graph.

After repeated testing and manipulations, the graph was ready. This graph was also
created using the TEL-A-GRAF include files. This allowed for one basic command file

that the other includes build from. This strategy made the manipulations of the labels

only a matter of changing one line, rather than rewriting the entire prorarn. The Jata

was again assumed to be already in place, properly formatted.

62

FY 86 BUDGET VS EXPENSES
COST CENTER 110

11 JULY 1986

4 Legend

M BUDGET
M BUDGET%

3.5- 1 EXPENSES

(/1 ,

-J 3............°... .. o........°-............................ -...............
.-J

00 .

LA.0 2.5

0 2............*°°°°°°...............................

InI
z
0

..

0.5................

..............

0 h

112 113 114 115 116 117 118 119
COST FUNCTION

Figure 5.9 Triple Bar Graph for Cost Center 9110.

6 3 ,

.... , I

Figure 5.9 shows the finished graph. This graph summarizes and compares

the budget to expenses, both to the total budget and to the percent of budget as a

function of time. Although not specifically addressed, variances can be identified and

estimated using this graph.

c. Variance Analysis Graphs

The last graphs developed represented four bar graphs displayed on one

page. These graphs display variance of the Cost Center for overtime, straight time

Hours and Labor, Material, Other and Total. Again, the same iterative approach was

taken in coding. The data was also assumed to be present in the data file. The graphs

contained the following information:

1. Percent Expended

2. Data Normalized on the Percent of Elapsed Time
3. Variance in Dollars

4. Percent variance

These graphs were suggested by the user. They are designed to fill a gap in the

analysis of variance. The exact manipulation of the data to attain these figures is

explained below. Figure 5.10 shows the structure and format of these graphs. A brief

description of each follows.

The percent expended shows the percent of elapsed time based on the date

of the data and the amount of the fiscal year elapsed. The remaining percentages

represent the percent of the budget expended. The formula for this is:

Percent Expended = Expense, Budget

Labor is broken down into overtime and straight time. These are key areas of interest
to the manager because he usually has direct control over Labor.

The data normalized on percent elapsed time, normalizes the elapsed time
to one. This normalization changes the percent expended from the first graph into a

percentage of elapsed time. That is, if 20% of the budget was expended and 20% of

the year had elapsed. the normalized value would be one, the same as elapsed time. If

the normalized percentage is less than one, less has been spent in that category. If the

percentage is greater than one, more than the percentage was spent.

Normalized = Percent Expended.' Percent of Year' 100

64

ImpIvVUj'EqU~.N~pVDpU lW lWvF%,lIUIkU W? '.FV Wmn.IP WVpl WE VWI %n w., %n P'M pw ' Win mr WWI win VVI w Fq- V

PERCENT Me E 9110
100-I.80-1

z' O
U j

VAIAC NDLLR

(L. 20 - - -...... .

DATA NORMAZM ON PERCENT ELAPSED TIME

2....................................-..=

VARIANCE IN DOLLARS
10000.

PE RCE r VIARIA NCE

oo-~

o zo

Figure 5.10 Four Graphs For Variace Analysis.

65

Variance in dollars gives the dollar amounts of the variance. This is

important because the percentages can be deceiving. If a category has a large variance,

but only a small amount of money was budgeted, the dollar amount may be

insignificant. For items with large dollar amounts, small variances could involve large

sums of money and be much more significant to the financial situation.

Variance- Expense - (% of Year * Budget)

Percent variance displays the values as the percentage based on the

budgeted amount. This is the percent of the budget divided into the amount expended.

% Variance - Variance / (% of Year * Budget / 100)

2. Graphics on the Microcomputer

The implementation on the microcomputer followed the same design as the

implementation on the minicomputer for the graphics. The variance graphs, however,

were not implemented on the "micro." The graphs produced and the completion of the

data base on the microcomputer, demonstrate the technical feasibility of this

implementation. However, there are limitations that must be considered.

The memory limitations on the micro did not allow us to implement a fully

interactive system. The graphics package used, GraphiC, combined with the data base

programs and the control programs would not run as an integral system due to

insufficient memory. This was resolved by having the control program interact only

with the data base. The control program would ask the user if he wanted a graph of

appropriate data. If the user responded positively, a data file would be created that

would be accessed by the graphics program. The user would then leave the control

program. choose the correct program to run, and run it. The data file is accessed

automatically.

The graphic programs on the microcomputer were more complicated to code

than the TEL-A-GRAF graphics on the minicomputer. Compiling and linking slowed

down the iterative design process, but the same procedures for developing the

microcomputer graphics were Followed. But formatting the output data was not a

problem since the data base management system and the GraphiC utilities were written

in a common language, C.

66

C. DATA

The data was not a major concern for us during the first iteration with the

minicomputer, except for identifying a particular data element needed for each graph.

Since the shipyard was responsible for extracting the data, we concentrated on the
control program and the graphics. When we began the microcomputer
implementation, the overall design was completed. However, this implementation

actually dealt with the data, so it became the central focus. Although we side stepped
the issue in the initial effort, we found that the data structure played a key role in the

design.

1. Data Base on the Microcomputer

Originally, we identified the origin of the data elements. The origin of the
data was the reports that were generated on the shipyard's mainframe. However,

halfway through the analysis, the reports changed. The new reports from SABRS

contained the information in a variety of formats and was produced on the
minicomputer. This report (SBR-22A) summarized the data by Cost Function,'Cost

Class for each Cost Center. This was the best way to store the data for our data base
because all combinations of Cost Centers, Cost Function, and Cost Class can be

derived from this information, thus minimizing the storage of the data.

One problem occurred that caused our data base to be larger than originally
planned. Entries that do not have values must be entered as zero. This greatly

expanded the data base because many authorized Cost Functions rarely use some

authorized Cost Classes. However if they are omitted, inconsistencies occur when the
budget and expense tables are joined in an operation. For example, if a particular Cost

Function,'Cost Class did not have a budgeted amount, but did have a later expense, the
expense would be lost in a comparison. The tables of the data base are joined on the
Cost Function/'Cost Class combination and if there is no value for a particular Cost

Function Cost Class, the value from the expense table is not included in the resulting

joined table.

The result is that an entry must be present for each authorized Cost
Function;Cost Class. The budget table contains only one value for each authorized

Cost Function/Cost Class. The expense table on the other hand, must contain a value
for each update. This means the table increases in size on each update by a constant.
If the update is made every two weeks, approximately 26 updates will have occured.

That means the expense table will be 26 times the size of the budget table.

67

..... --------- * . . ~ S ~ .

2. Historical Data Base

If an historical data base is desired for the DSS, an additional field will need

to be added to the budget table: the fiscal year. All selects based on the current fiscal
year will have to be identified by year, or by maximum fiscal year, if the next year's

budget is not yet installed.

3. Data Base Design

We anticipate that the final system's data base will be electronically updated.

The volume of the data is very predictable. The expense data will be appended at mid-

month and at the end of each month.

The data retrieval rate is estimated to be fairly low 10 to 20 times daily. At
critical periods in the fiscal year, the utilization will be much higher, such as the end of

quarters, prior to mid year review, and at the end of the fiscal year. The retrieval rates

at those times is estimated to double or triple.

Managers can allow others access to their data base with read only privileges.

Some information and views can also be restricted using the data base's userids and
passwords. This can increase the utilization of the data base while still maintaining

control over the dissemination.

a. Bachman Diagram

Budget

Expense

Figure 5.11 Data Base Design Bachman Diagram.

The main relationship for this implementation is the one between budget
and expenses. As depicted in Figure 5.11 this is a one to many relationship. Even if

68

budgets are developed monthly or quarterly the relationship holds. The newer budgets

simply supersede the older ones.

b. Relational Model

The record structures are depicted for the data base design (keys are

italicized):

1. BUDGET (COST FUN VO COST CLASS NO, ST HOURS, OT HOURS,
ST LABOR, OT LABOR, MATERIAL, OTHER)

2. iXPENSE(COST FUN NO, COST CLASS NO DATE ST HOURS, OT
HOURS, ST LABOR, OT LABOR, MATERIAL, OTHER)

c. Normal Forms

Normalization is a process by which we attempt to minimize "anomalies" in

the data base design. These anomalies generally can cause data inconsistencies, loss of
entire records during updating, and inappropriate relationships between different record

types when joining tables. The effort is to normalize to as high a degree as possible,

trading off retrieval performance and increasing interrelational constraints [Ref. 131.
In the discussion of normal forms, we do not attempt to justify our

normalization beyond the third normal form. We felt that the excessive interrelational
constraints would tend to make the data base less workable. In addition, all tables are
in first normal form, because of the lack of repeating groups in our data structures, so

discussions that further illuminate that point are not needed.

(1) BUDGET Table.

This table is in second normal form since all the non-key attributes rely
on all of the key (Cost Function number and Cost Class number). Additionally, all the

non-key attributes are independent of each other. For example, Hours (straight or

overtime) does not directly relate to Labor cost, since it requires computations Ind

reference to other schedules in order to be produced. That is the reason why both

Hours and Labor are listed. With the independent non-key attributes, there are no

transitive dependencies, placing Budget in third normal form.

(2) EXPENSE Table. The Expense table is similar in structure to the

Budget table. However, it has an additional attribute in the key, Date. All the non-

key attributes require reference to all attributes of the key, so this table is also in

second normal form. Again the non-key attributes do not directly relate to each other,
so it is also in third normal form.

d. Interrelational Constraints

69

There are going to be a certain amount of interrelational constraints in any

data base. The important questions to consider are do the designers realize its

existence, do they understand why it is there, and are they in control of it. In this data

base the existence of the interrelations is largely a function of the nature of the

problem that the data base attempts to address. The greatest interrelational

dependency is caused by the Cost Function and Cost Class numbers. They are the

most integral pieces of data within the data base. Without them the tables that

contain them would be meaningless. They are the language for tracking costs of

operations within the Cost Centers of the Shipyard. They categorize the data.

Combining all the tables with these common attributes is not a sufficient

answer to reduce interrelational constraints, since that would reduce the normalization

of the tables, and increase redundancy. The trade-off is to keep this interrelational

constraint, since it requires the least overhead and maintenance.

70

2

s sri ,...lSF'.aflf.. .. . r 7p . .U , rv ps , . -.

VI. INTERPRETATION OF THE DEVELOPMENT EFFORT

A. ANALYSIS OF THE METHODOLOGY
The approach we applied to this development effort appears to have worked well

for this project. The requirements presented to us were not clear, since the users did
not have a concrete idea of what they specifically needed or wanted for this
information retrieval and display system. In addition, we did not have a clear
understanding of what was being asked of us, and what the effort would entail.

The methodology we selected forced us to be thorough in our analysis and
design, and gave us flexibility to alter development directions. We elected to follow a
combination approach, which we felt would best answer the needs and requirements of
this particular project. This pilot project was carried out within the framework of a
prototyping approach. The development environment follow the dictates of Yourdon
for a prototyping environment [Ref 3: pp. 225-2261:

1. There is only a single user or at most a small group.of users who are 'localized'
in the sense that they work in the same organizational group and within the
same physical location.

2. The data model exists or can be easily created.

3. The application is small to medium.
4. Everyone agrees that the prototype is only a 'toy' system and that it is intended

as nothing more than a model o-the production system
The prototype approach was essential. We were attempting to develop a system

based on an unclear problem statement and no prior experience; we required the slack
that this approach could provide. Meeting Yourdon's premises further supported the
prototyping decision.

Our approach to prototyping was not simply to go forward and start writing lines
of code. Within this framework we applied structured analysis to conduct the analysis
of the present situation. We selected the structured tools in order to provide ourselves
with the clearest appraisal of the users' present system. The structured design

following the analysis easily flows from the same tools and provides the users with a

clear documentation of how the system was designed. The resulting structured

specification of data flow diagrams, data dictionary and structure chart clarified our

understanding and assisted the coding efforts of the two phases.

71

,"-'#*" ' ", e", .""•"w". ."". ",'.-..'.',, .. t. e. , e~e ,,.e . .'.. ,'d .,,. '.'.,. '.,' .,.' .', ,-' . - .. '..'.'," ."..... , ..

1. Documentation

The program design of the first project more closely followed the structured

design than the second did. The major reason is that during the second, the

orientation of the project shifted. The importance of the data base design became

apparent during the microcomputer implementation. The design and structure

documents are purposely made broad to keep from locking in on one systern

Although the constraints of hardware and software greatly limit the alternatives, by

keeping the design flexible and general, several alternatives became apparent.

In actuality, we built two prototypes in this project. Although neither are

complete in the sense of a production model, both contributed to the overall project.

Neither system as yet has the capability to be updated electronically. Yet both rely on

the concept of the electronic update based on the SABRS reports for their feasibility.

The minicomputer version has a data base in design concept only. The microcomputer

version does not have all the graphs implemented, and none of the variance analysis

graphics. However, although they are different systems, together they complement

each other by providing us with differing views of the same project.

The quick implementation of the microcomputer version proves that the

design was generic enough to be implemented on two completely different systems.

The design for the major modules was already completed. We quickly found that a

more detailed design was necessary to actually develop the data base. This is part of

the iterative process. Now the data base design is completed and could be

implemented on the minicomputer relatively quickly.

All the modules were designed to be independent, with low coupling. This

helped us create a system that could be implemented on two different systems. As the

final alternative is selected, only the automation boundaries and the timings of the

system will probably need to be changed in the design documentation.

2. Iterative Approach
The iterative approach also was very successful for us. Allowing the user to

see the progress and make changes throughout the project enhanced the

communications between the user and the developers. This communication is very

important to any methodology and no less with this one.

The iterative, prototyping approach proved its flexibility when the users
changed to a new accounting system, known as SABRS. SABRS changed the format

of the input data for CCA. Although not major, the changes demonstrated the

significance of built-in flexibility in a development effort.

72

p

%~V~VS ~~ ~ ... '. A Z~.h ~.x. :. .n.\ .'. A, : 2. ~ 2 A

The point of this discussion brought out by the structured techniques is that

the final system, whether prototype or production, must be maintainable. By this we

mean that it must be easily adapted and modified to meet the changes during the

iterative approach and changes in user requirements. Therefore, we strove to ensure

that the documentation of our prototype was as clear and as understandable as

possible.

3. Communication

Communication is not directly related to any methodology, but is a key factor

in any analysis. An analyst must be able to communicate with the user. During our

analysis phase, we conducted several interviews. After focusing on a decision, budget

control, we set up appointments to meet with various the budget experts within the

shipyard. At this point the project scope had not been fully defined and we were

looking for general information and procedures on the budgeting process. As system

analysts in an interview situation, we quickly found ourselves on the receiving end of

several questions. Instead of doing the interviewing we were being interviewed. We

lost control of the initial interview and, even though they were still cooperative, we

initially lost the interest of a potential user of a DSS.

The lessons learned from this interview were many. Interviews, especially

initial meetings, must be carefully planned. A brief summary of the questions, or the

type of questions that we were going to ask presented to the user prior to the interview
would have been a much better way begin. The problem definition should have been

defined better prior to the interview. The Term DSS was also used freely, which

brought connotations of wonderful systems that have all the answers. Our system was

a pilot project, not a production system, and this fact should have been introduced up

front.

We found that our interviews with the users were tainted by our unfamiliarity

and our own preconceptions of what they wanted. These problems were largely an

outgrowth of our inability to ask the right questions, our lack of experience with the

interview process, and'in some cases our incomplete technical knowledge. Generally.
our abilities and .nterviews grew as our understanding of the system and our Larmliartv

with the users grew. The best interviewing technique that we found was knowing
ahead of time what to ask, and asking it in a manner that does not cause a defensive

response.

73

This is an area that is usually glossed over by most authors in the DSS arena.

Possibly most authors do not perceive a need. One answer might be that most

developers do not think they will make those 'classical types' of human interaction

errors. To many, these issues may seem of little consequence. Finally, these

development efforts are completed by information specialists and not clinical

psychologists. Therefore, the tendency is to deal only on a cursory level with what is

not very tractable.

4. Remote Site Development

Not being able to be on-site during the development process was definitely a

liability. This fact more than any other slowed our progress. It was difficult to find

time to consult with the users, and the distance of the commute precluded conferring

with the users over what we perceived as smaller matters.

On a couple of occasions those smaller matters were a lot more important

than we had thought. Additionally, a better job of analysis could have been done if we

had more opportunities to consult with the users. For example, the perception of

being considered outsiders to the organization might have been reduced. We would

urge any would be developers to spend a significant and consecutive block of time with

the users if at all possible.

B. RESULTS FROM CCA PILOT PROJECT

Based on our methodology and the resulting prototypes, several conclusions and

alternatives can be drawn. The first area of concern is the data extraction. The data

for the system must be extracted from SABRS. This extraction system is the key for

continuance of alternatives based on this project, other than to stop any further

development at this time. The worth of the system has been demonstrated, making

this option unlikely. Once the data base is extracted a repository must be set up.

The data base approach is essential to this type of development. A file

management approach is too limiting and unwieldy for systems that frequently update

information: In a file system, either data Files must be overwritten with new data, or if

new tiles are added with each update, the application program must be altered [or each

new file. A pure file system of data management is useful only for a test system, not

for a "real world" system.
Therefore, the kernel of an info-mation display system should be a data base

management system (DBMS). This requirement also applies to DSS's. The DBMlS

74

reduces the amount of coding and design that the developers must use to build a DSS.

The capabilities of the overall system can be quickly enhanced without the design and
programming complexities. Some of the desired capabilities would be a sophisticated

command language, documentation utilities, easy data loading and deletion utilities,

user control, and security utilities. The flexibility of the DBMS is an outgrowth of the

degree of capabilities it possesses. Developers only need to design interfaces to the

DBMS.

1. Data Base Design
When designing an information system, a data reference is critical. The most

flexible data base system that we recommend is a relational data base. A relational

data base can offer several advantages as demonstrated in the microcomputer

implementation. A variety of information can be selected and compared from different

tables. Calculations can be made on the data at the data base level, allowing for fewer
intermediate programs to be necessary for formatting or scaling of data.

The relational data base we used on the microcomputer was Oracle. Oracle

offers several advantages to a system. First, Oracle is available for mainframe

computer, minicomputer, and microcomputer use. This means that a user who may
have access to both a minicomputer and a microcomputer needs to learn only one data

'V

base system. The sharing of data and data extraction is also more attractive when the

data base systems are the same. Oracle's command language is easy to learn by
anyone who knows a programming language. In fact, Oracle's command language,
SQL, is non-procedural so it is more easily learned than BASIC. The user must only

understand the basic constructs of SQL and the logical implementation of those

constructs.

Documentation utilities assist the user in the development of the data

dictionary for the particular data base design. With them the user can obtain the
structure of the tables he has produced, a listing of the various tables and indices he
has developed (by name, structure type, and filet"pe), data elements (by name, type.

source, and definition), and a listing of the data structures showing the particular

elements that they contain. Oracle only provides some of these. For the sake of

clarity we created the tables to produce these definitions for our system in the

microcomputer implementation.

User control and security are easily implemented through Oracle. Users can

create views and determine the types of access they wish to assign to other users of'

75

I % "1

their data. Additionally, the data base administrator or the user acting as the data

base administrator can determine the types of access all users will have to the data

base.

2. Longterm Data Base Considerations

With the need of a historical data base clearly identified, the use of the

microcomputer alone does appear to be feasible. The amount of data and overhead of

a DBMS on a microcomputer would be prohibitive. Therefore, an extraction system is
necessary for the minicomputer. Once a data base is established on the minicomputer,

the microcomputer can extract the data for a particular cost center as needed or a user

could use a system implemented on the minicomputer.

'

76

o.-

VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS
The methodology we followed was a task organized approach. We felt that no

one approach of the major authorities on DSS development was complete in and of
itself. The task organized approach allowed for structured documentation tools to be
used with an iterative approach.

The iterative approach was central to our methodology. Design and
implementation must be accomplished in quick, as short as possible cycles, in this
iterative approach. This allows the developer to interact with the user, to obtain rapid
feedback on the progress and the direction of the project. Communication is very
important to a DSS project.

Often the problem definition in a DSS cannot be as precise as in a MIS project.
The semistructured or unstructured nature of DSS projects can make a clear cut
problem definition impossible. By approaching a problem that is not very well defined
in quick, rapid, iterative steps, the problem will become clearer as the iterations
progress.

The proper environment must be established before a DSS can be initiated.
When initiating a DSS, minimization of risk is crucial. If an initial project is not
successful, it may be a long time before subsequent attempts at a DSS are made, even
If a DSS ;s needed.

In order to minimize risks, a champion or strong enthusiast must be found. This
is a person who can envision the benefits of a DSS. If there is no proponent of" the
system, or it is forced on someone, the iterative approach will not be effective. User
relations is of paramount importance and must be established immediately. Being
prepared and not bringing any surprises is the best way to keep your relations in good
standing.

Once the enthusiast is tound. i decision must)e "ocused upon. The DSS shouid
focus on one decision or one problem. This limits the scope and allows the developer
to narrow in on one area. A user, upon hearing the term DSS, may get visions of a

system that will answer his every question within seconds. By focusing on one

decision, the developer can guide the user throwzh the proiect without buiiding flke
hopes or ausleading expectations.

77

- -- new rn S ww..ww saw -. K -rm wr.. n. .V P .- V .,

Within our methodology, we utilized structured techniques during the analysis

and design. These techniques included the use of data flow diagrams, structure charts,

and a data dictionary. We feel that these are among the best documentation tools

available today. The use of these tools reduce maintenance costs later. Further

development is also made easier with the structured documentation. This is especially

true when the original developers are not going to be involved in any further

development.

When the enthusiast is found, the decision is identified and the structured tools

of analysis and design are ready, Sprague and Carlson's ROMC approach further

focuses the effort [Ref. 21. Representations let the developer focus on the displays the

user desires, the logical design. With the representations, the data and data base must

be investigated and documented. The data base is the keystone of the DSS.

Operations should follow easily with the representations. The manipulation of data
and displays are the required operations. Memory aids remind the user of what needs

to be done or what can be done. The controls for the system can then be designed to

interface the parts into a functioning, useful system.

During our iterative steps, we began a similar development on a completely
different system. Although this is not recommended for every DSS development, it

helped us focus on problems that we had been overlooking in the initial prototype. By

using the same design documented with structured techniques, we were able to quickly

develop the similar system on a microcomputer. This gave us the opportunity to

compare the systems. This comparison helped identify some problems on both systems

that may not have been identified until later in the project.

B. RECOMMENDATIONS

Mare Island Naval Shipyard has several alternatives available to them at this
point. We recommend that the data base for the minicomputer be implemented. This

will allow a better comparison between the minicomputer and the microcomputer.
Since the documentation is availa6le from the microcomputer implementation and the

design of the data base is complete and can be used with any relational or data base

that is logically relational, this step should encompass only 20 manhours, fewer if the

programmer is familiar with the tools. Next, or even concurrently, the extraction of
the data from SABRS must be completed. The extraction of the data is not a trivial

problem. although technically it is feasible. The extraction is necessar" to get the data

78

" " " ,' • " " " " '- " , , . ''" k'''''" - - " . ''''- - - - - .,'''""" - """ , , " """"""I."' " .

.vWVwv..K.-". W

into the data base whether it is on the minicomputer or the microcomputer. We

estimate the data extraction from SABRS into a data base to be a 160 manhour job.

Our estimate is based on our work with this project and not on any previous data

extraction experience.
With the data base and data extraction, data integrity and accessibility will have

to be defined. Since an historical data base is desired, the data base should not be able

to be changed by the normal user. This can be accomplished easily in a data base

system such as Oracle.

Once the data base is established and the extraction system is in place, several

alternatives must be decided upon. If the system does not appear to be feasible, the

project can be stopped. If the project continues, additional cost centers can be added
iteratively. This would be a safe course to follow. In that case, the control programs

would have to be modified to include the new cost centers, and the graphics modules

for each new graph would need to be written. These would be the modules that are

appended onto the main module for each graph.

The feasibility of tying CCA in with SABRS is another possibility. SABRS offers

the user a 'wi-at if- capability. If SABRS could be integrated with the graphics of

CCA, a more powerful DSS would result at a minimal cost. The difficulty and

compatibility of the systems should be determined when the extraction of the data is

accomplished.

Whether the minicomputer implementation or the microcomputer

implementation is better is another question that must be answered. A

microcomputer should not be the repository for a large historical data base. However,

a microcomputer could be used as the workspace for the decision maker. This would

allow the decision maker the opportunity to change his data as he wishes without

affecting the centralized data repository. Microcomputers allow the user to view the

graphics at his desk, where the minicomputer CCA would require a graphics terminal

or a hard copy to be created for the decision maker.
The rriinicomputer should be the repository for an historical data base. This will

simplify che extraction problem, from minicomputer to minicomputer. The graphics

modules on the minicomputer are easier to create and maintain, and a sophisticated
user can learn TEL-A-GRAF at the command level, creating his own graphics. This is

much more difficult on the microcomputer. The graphics on the microcomputer are
written in C and are not written in a command language style like TEL-A-GRAF.

79

:-Z

1.p l p * p FSWU . w~ S sIr r' u- V %niral~ Ln W ra irslw ir a urW115 -ais,. -U'KPW P- rVPr X I M Pin " 1,5 1r rs . i i p

C. SUMMARY

The best way to approach a DSS problem is with a DSS methodology. An

iterative approach that uses the tools of structured analysis and design provides the

developer with the best of both worlds. The necessary documentation for a project is

completed and the short cycles of the iterative approach help to promote

communications.

Mare Island Naval Shipyard should complete the data base implementation and

the data extraction system. Expanding that system to include all the cost centers,

iteratively, one at a time, is a minimal risk alternative. Interfacing CCA directly with

SABRS would be another inexpensive alternative. Whether the networked

minicomputers or the microcomputers are most desirable to a decision maker is still

questionable. Perhaps it should be left to the individual decision maker to decide.

Further research is indicated in the area of data extraction. The usefulness of the

microcomputers in the offices in five years is another research question that can be

investigated. Finally, the direction that the DSS should take after the successful

implementation of the CCA is an important area for follow-on research. This would

include an overall design of a F,,,',. the Shinvard.

80

APPENDIX A
STRUCTURED SPECIFICATION

1. DATA FLOW DIAGRAM
Data flow diagrams show the "flow of data, not of control." The symbols used

are [Ref. 4: p. 40]:
1. The named vector (called a data flow), which portrays a data path.
2. The bubble (called a process), which portrays transformation of data.

3. (Two parallel straight lines) which portray a file or data base.
4. The box (called a source or sink), which portray.s a net originator or receiver of

data - typically a person or an organization outside the domain of our study.
'The Data Flow Diagram is documentation of a situation from the point of view of the
data.' [Ref. 4: p. 411 It will provide the user a clear understanding of the present
situation, and also the data required for the operation of the system. In addition, any

errors in the system description can be more easily identified by other analysts.

The Data Flow Diagram is developed hierarchically. In this case the Top Level
diagram is in Table 4, the First Level diagram is in Table 5, and the Second Level

diagram ci" Process 1.0, of the First Level, is in Table 6

2. MINISPECIFICATION
We were not concerned with the exact details of how the users accomplished the

processes in the Data Flow Diagram. The primary consideration was to get a general

idea of what was going on, model it, and attempt to develop a system that would assist
them.

1.1 Select Data
1. Gather Budget Input Reports provided by the Comptroller Department.
2. Select the data to be used for the desired report.

1.2 Insertion of data
1. Input the selected data to a data file.

2. The extracted data is used to prepare the desired report.
2.0 Prepare Reports

1. Input the management query

2. Identify the type of report that will answer the query.
3. Determine if:

81

TABLE 4

TOP LEVEL DATA FLOW DIAGRAM

Management
Code 9110

Budget Request Management
Inputs Query Query

Response

Cost
• CenterI

MEIO Requirements Analysis
and Constraints

Beprt
E x tra c te d

Overhead form Database
Expense

(Cost
Class) Budget Constraints

* Extracted data from budget input reports will be needed, or

• Overhead expenses (cost class), or
* Actual to budget comparison will support the report selected.

4. Manipulate and format the input data as requested in the management query.

5. Provide query response to management.

3.0 Prepare Budget

I. Identify Comptroller budget constraints

2. Identify MEIO requirements and constraints.

82

.- t q~ t .~ -

TABLE 5

FIRST LEVEL DATA FLOW DIAGRAM

pudget IIData Base

|p

_ P~erformancelL .
Aculto Bu Adge.t l
Budiget i Extracted Input .

.. o ¢1.0 7 P"

- "Prep-a...e Extracted Data /Extract Budget

Rep°ortos v Repor
and onstainsverhe vehed

Bugt | I(Cost Class)

Requireme nts I

83

.. .. ,-.,,.,,p ,:,..,.:..: .-.;," .:-:.-,,,.-'..'......,'./ .. ,.:.. ,<,,*-. *: :: : . : :.. . ; - . ; : .:. : : . :

TABLE 6

SECOND LEVEL DATA FLOW DIAGRAM OF PROCESS 1.0r 1.
Extracted Insertion Selected .1,elc Report

Data |of Data Data na a Type

o File Data

(D

0

[Data Processingl

3. Request and identify budget request inputs within MEIO.

4. Develop MEIO overhead expenses (cost class).

5. Obtain management approval for the budget.

6. Submit to the Comptroller.

4.0 Monitor Budget Performance

1. Analyze extracted data from SBR-22A and SBR-22B.

2. Determine progress and errors, if any.

3. Report to management if requested.

3. DATA DICTIONARY

This section provides a rigorous description of the data that is depicted in the

Data Flow Diagram. Before the completion of this section we had only a cursory

understanding of the data involved. The disciplined analysis, which involved breaking

larger data flows into data elements, brought a great deal of clarity to our

understanding of the data.

The Data Dictionary is organized alphabetically to assist the reader in locating

particular documents or data elements.

ACQUISITION OF MINOR PROPERTY (68) =

84

I

*COST OF PURCHASED OR

MANUFACTURED MINOR PROPERTY,

WHICH IS DEFINED AS THOSE COSTING

LESS THAN 51000 *

ACTUAL MATERIAL AMOUNT =

* TOTAL DOLLAR AMOUNT OF MATERIAL COSTS

INCURRED TO DATE WITHIN A COST FUNCTION

ACTUAL OT HOURS -

*OVERTIME MANHOURS CHARGED TO

DATE WITHIN A COST FUNCTION *

ACTUAL OT LABOR AMOUNT =

* TOTAL DOLLAR AMOUNT OF OVERTIME LABOR

CHARGED TO DATE WITHIN A COST FUNCTION'

ACTUAL OT M/P,'D =

'OVERTIME MAN PER DAY ACTUALLY INCURRED TO

DATE WITHIN A COST FUNCTION *

ACTUAL OTHER =

'TOTAL DOLLAR AMOUNT OF OTHER

INCURRED TO DATE WITHIN A COST FUNCTION *

ACTUAL ST HOURS -

'STRAIGHT TIME MANHOURS CHARGED TO

DATE WITHIN A COST FUNCTION *

ACTUAL ST LABOR AMOUNT -

* TOTAL DOLLAR AMOUNT OF STRAIGHT TIME LABOR

CHARGED TO DATE WITHIN A COST FUNCTION *

ACTUAL ST MP'D =

*STRAIGHT MAN PER DAY ACTUALLY INCURRED TO

DATE WITHIN A COST FUNCTION *

ACTUAL TOTAL AMOUNT =

*TOTAL DOLLAR AMO[NT INCURRED FOR A COST

85

r %

an., wign. flt, w1wS-- m-. am aI. - wwjw xr -wuFw- -w -w w-n Sr

FUNCTION*

ADMINISTRATION (9112) -

* ALL LABOR AND OTHER COSTS IDENTIFIABLE TO THE

ADMINISTRATION OF THE DATA PROCESSING OFFICE AND

OVERHEAD COSTS NOT ASSIGNABLE TO OTHER

FUNCTIONAL SUBDIVISIONS *

AVE OT RATE -

* AVERAGE HOURLY RATE FOR OVERTIME (BASED

ON INDIVIDUAL RATES) *

AVERAGE BASE =

• AVERAGE HOURLY RA FE ACCELERATED BY 32-1/2% TO

ACCOUNT FOR BENEFITS AND LEAVE

BUDGET CONSTRAINTS =

• CONSTRAINTS SET BY THE SHIPYARD COMPTROLLER (IE.

ANNUAL LEAVE WILL NOT EXCEED 14%)

BUDGET REQUEST INPUTS =
• MANAGEMENT REQUESTS FOR INCLUSION OF PARTICULAR

ITEMS WITHIN THE DEPARTMENTAL BUDGET

BUDGET VS ACTUAL PERFORMANCE REPORT (SBR-22A) =

ISSUE DATE + DATA DATE +
(COST CENTER) + {COST FUNCTION)

' [COST CLASS} + {ST HOURS) +

{OT HOURS) + {ST M,'P/D} + {OT

M/P'D) + {ST LABOR) + {OT LABOR)

+ {MATERIAL AMOUNT) + {OTHER AMOUNT)

+ (TOTAL A.MOUNTl]

BUDGETED MATERIAL AMOUNT =

• TOTAL DOLLAR AMOUNT OF MATERIAL

BUDGETED TO BE INCURRED FOR THE

FISCAL YEAR WITHIN A COST FUNCTION *

BUDGETED OT HOURS =

86

* OVERTIME MANHOURS BUDGETED FOR THE FISCAL

YEAR WITHIN A COST FUNCTION*

BUDGETED OT LABOR AMOUNT-
* TOTAL DOLLAR AMOUNT OF OVERTIME LABOR

BUDGETED FOR THE FISCAL YEAR TO BE INCURRED
WITHIN A COST FUNCTION *

BUDGETED OT M/P/D -

OVERTIME MAN PER DAY BUDGETED FOR THE

FISCAL YEAR WITHIN A COST FUNCTION*

BUDGETED OTHER -

*TOTAL DOLLAR AMOUNT OF OTHER
BUDGETED TO BE INCURRED FOR THE

FISCAL YEAR WITHIN A COST FUNCTION 0

BUDGETED ST HOURS -
0 STRAIGHT TIME MANHOURS BUDGETED FOR THE FISCAL

YEAR WITHIN A COST FUNCTION 0

BUDGETED ST LABOR AMOUNT -

*TOTAL DOLLAR AMOUNT OF STRAIGHT TIME LABOR

BUDGETED FOR THE FISCAL YEAR TO BE INCURRED
WITHIN A COST FUNCTION *

BUDGETED ST M/P;D =
0 STRAIGHT MAN PER DAY BUDGETED FOR THE

FISCAL YEAR WITHIN A COST FUNCTION 0

BUDGETED TOTAL AMOUNT =
TOTAL DOLLAR AMOUNT BUDGETED FOR THE

FISCAL YEAR FOR A COST FUNCTION

CATEGORY TITLE = * FUNCTION COST CLASS 0

CONSUMEABLE SUPPLIES (12)=
* MATERIAL COSTS OF CONSUMEABLE.

REUSABLE, AND MINOR NON-CONSUMEABLE

87

" " " ,' .% '% " *t % - %- % *. . % ", %" . . ' " " " q ° " " . . . ' " " q * "" "
°

" " I.

SUPPLIES AND MATERIALS NOT

OTHERWISE CHARGEABLE TO ANOTHER

COST CLASS, OR AS DIRECT MATERIAL

TO PRODUCTIVE JOB ORDERS'

CONSUMEABLE SUPPLIES AND INSTALLATION (97) ,

* COST OF CONSUMEABLE SUPPLIES RELATED TO

THE ADP FUNCTION; ALSO CHARGED WITH IN-

HOUSE COSTS ASSOCIATED WITH THE

INSTALLATION OF ADP MINOR PROPERTY*

CONTRACTUAL SERVICES (96) -
* COSTS OF CONTRACTUAL SERVICES (FOR

EXAMPLE, TIME SHARING OR DATA ENTRY

SUPPORT) OTHER THAN THOSE SERVICES

SPECIFIED AS CHARGED TO COST CLASSES

94 AND 95

CONTROL AND SCHEDULING (9116) -

* ALL LABOR AND OTHER COSTS

IDENTIFIABLE AS OVERHEAD OF THE

CONTROL AND SCHEDULING

FUNCTION, EXCEPT FOR COSTS

IDENTIFIED TO COST FUNCTION

9119 *

COST CENTER - COST CENTER NUMBER + COST CENTER NAME

COST CENTER NAME =

[DATA PROCESSING OFFICE/MANAGEMENT

ENGINEERING OFFICE]

COST CENTER NUMBER = [91111/4 01

COST CLASS (NUMBER) -

[SUPERVISION GRADED (02)1 NON-SUPERVISION

GRADED (03)1 SHOP GENERAL (04l1 MATERIAL

(04)1 CONSUMEABLE SUPPLIES (12) UNALLOCATED

88

i

(19)1 TRAVEL (30)1

DUPLICATING/MICROFICHE/ILLUSTRATORS (33)

TRAINING (39) ACQUISITION OF MINOR PROPERTY

(68)1 SUPERVISION GRADED (91)1 NON-

SUPERVISION, ANALYSIS AND PROGRAMMING (92)1
NON-SUPERVISION GRADED, OTHERS (93) RENTAL

AND COMMUNICATION (94)1 MAINTENANCE (95)1
CONTRACTUAL SERVICES (96) CONSUMEABLE SUPPLIES

AND INSTALLATION (97)1 MINOR PROPERTY (98)1

TRAINING (99)]

COST CLASS NO. - COST CLASS NUMBER

COST FUNCTION -

[MIS IMPROVEMENT ADP PROGRAMS (9111){
ADMINISTRATION (9112){ PROGRAMMING (9113){

RENT OF EQUIPMENT AND INSTALLATION COST (9114){

OPERATIONS (9115)(CONTROL AND SCHEDULING (9116)(

EDP OPERATIONS (9117)1 EAM OPERATIONS (9118)1
NAVSHIPS NSY MIS PROGRAM (9119){ MANAGEMENT

ENGINEERING OFFICE ADMINISTRATION (9142)(

MANAGEMENT SYSTEM SUPPORT (9143){

QC,'PRODUCTIVITY (9144)(]

DATA DATE - EFFECTIVE DATE OF DATA USED FOR THE REPORT *

DEPARTMENTAL SUMMARY BY COST CLASS AND SHIPYARD TOTAL

(BUDGET VS ACTUAL)-

ISSUE DATE + DATA DATE +
{COST CENTER) + {COST CLASS) +

(ST HOURS) + fOT HOURS} "- ST M,,P'D}

-OT M, P,'D) + ,ST LABOR' + (OT LABOR)
+ (MATERIAL AMOUNT) + (OTHER AMOUNT)

+ (TOTAL AMOUNT)]

DUPLICATING' M ICROFICHE, ILLUSTRATORS (33) =

COST OF ALL PURCHASED

89

I~

PRINTING, REPRODUCTION AND

DUPLICATING WHEN NOT CHARGEABLE

TO A PARTICULAR CUSTOMER ORDER

EAM OPERATIONS (9118) -
* ALL LABOR AND OTHER COSTS IDENTIFIABLE

AS OVERHEAD OF TIlE EAM OPERATIONS

FUNCTION, EXCEPT FOR COSTS IDENTIFIED TO

COST FUNCTION 9119

EDP OPERATIONS (9117) -

* ALL LABOR AND OTHER COSTS IDENTIFIABLE

AS OVERHEAD OF TIE EDP OPERATIONS

FUNCTION, EXCEPT FOR COSTS IDENTIFIED TO

COST FUNCTION 9119

FUNDS ADMIN (CODE NO.) -

'CODE OF FUNDS ADMINISTRATOR FOR

MANAGEMENT ENGINEERING AND

INFORMATION OFFICE (014,'016)*

INPUT DATA -

(COST CENTER,'FUNCTION BUDGET VS ACTUAL

PERFORMANCE REPORT (SB3R-22A) DEPARTMENTAL

SUMMARY BY COST CLASS AND SIIIPYARD TOTAL

(BUDGET VS ACTUAL) (SBR-22B)]

ISSUE DATE - * DATE REPORT WAS SUBMITTED TO USER *

MAINTENANCE (95) - *MAINTENANCE COSTS OF ADP EQUIPMEN'

MANAGEMENT ENGINEERING OFFICE (9142)=

ALL LABOR AND OTIIER

COSTS IDENTIFIED AS OVERHEAD OF

THE DIRECTOR OF MANAGEMENT

ENGINEERING OFFICE, AND OTHER

COSTS WIIICII ARE NOT ASSIGNABLE TO

90

ANOTHER FUNCTION OF THE MEO*

MANAGEMENT SYS SUPPORT (9143) -

'ALL LABOR AND OTHER COSTS FOR

PERFORMING THE MEO FUNCTION*

MANAGER QUERY -

AD HOC QUERIES CONCERNING BUDGET PREPARATION,

CONTROL AND VARIANCE ANALYSIS*

MATERIAL (04) - 'SYNONYM FOR SHOP GENERAL -

MATERIAL AMOUNT -

[BUDGETED MATERIAL AMOUNT + ACTUAL MATERIAL

AMOUNT + PERCENTAGE OF MATERIAL AMOUNT +

MATERIAL VARIANCE]

MATERIAL VARIANCE -

* ACTUAL OT LABOR MINUS THE AMOUNT OF THE

BUDGETED OT LABOR THAT SHOULD HAVE BEEN

EXPENDED TO DATE (ACTUAL MINUS THE PRODUCT

OF THE PERCENT OF THE PERIOD ELAPSED AND

BUDGET)'

MEIO REQUIREMENTS AND CONSTRAINTS =

" CONSTRAINTS SET BY THE MEIO MANAGEMENT *

MEN GROSS = * TOTAL NUMBER OF PERSONNEL *

MEN IVB =

'COMPUTED TOTAL NUMBER OF PERSONNEL MINUS

THOSE ON LEAVE'

MEN OTHER = PERSONNEL BORROWED BETWEENCOST CENTERSl

MEN TOTAL - 'THE TOTAL OF MEN IVB AND MEN OTHER'

MINOR PROPERTY (98) -

'PURCHASED COSTS OF ADP MINOR PROPERTY. WHEN

THAT COST IS LESS THAN S1000 OR THE ITEM HAS

91

-.'-,,,- x,, a, .,.' .',',.'-.'-.'.. ._'-.'-, .,_-....,-... ".'-.'.¢-.-..'.'." - -".".' .".-.-' -"-"."-...:.."*".- -".' .;'." *',". 4"" 4. .'..' 44

naw ai .wrww "~ "I rwvw n ww ru w u* uuwt ~,nnI , 7 ~ fmr* 1syi'WI.. Vw . .W- a

A USEFUL LIFE OF TWO YEARS OR LESS REGARDLESS

OF COST

NAVSHIPS NSY MIS PROGRAM (9119) -

*ALL LABOR AND OTHER COSTS

IDENTIFIABLE TO DEVELOPMENT

AND MAINTENANCE OF NAVSEA

NAVSHIPYD MIS ASSIGNMENTS

NON-SUPERVISION GRADED (03) -

*INDIRECT LABOR COST OF NON-

SUPERVISORY GRADED PERSONNEL*

NON-SUPERVISION, ANALYSIS AND PROGRAMMING (92) -
* LABOR COSTS OF PERSONNEL WHILE

ENGAGED IN ADP ANALYSIS AND PROGRAMMING *

NON-SUPERVISION GRADED, OPERATIONS (9115) =

* ALL LABOR AND OTHER COSTS IDENTIFIABLE AS
OVERHEAD FOR SUPERVISING AND ADMINISTERING

THE OPERATIONS DIVISION, EXCEPT FOR COST

IDENTIFIED TO COST FUNCTION 9119

OT HC 'RS =

[BUDGETED OT HOURS + ACTUAL OT HOURS - PERCENTAGE

OF OT HOURS + OT HOURS VARIA."CE]

OT HOURS VARIANCE =

ACTUAL OT HOURS MINUS THE AMOUNT OF THE

BUDGETED OT HOURS THAT SHOULD HAVE BEEN

EXPENDED TO DATE (ACTUAL MINUS THE PRODUCT

OF THE PERCENT OF THE PERIOD ELAPSED AND

BUDGET)

OT LABOR AMOUNT -

[BUDGETED OT LABOR AMOUNT + ACTUAL OT LABOR

AIOUNT + PERCENTAGE OF OT LABOR AIOUNT - OT

LABOR VARIANCE]

92

OT LABOR VARIANCE -

* ACTUAL OT LABOR MINUS THE AMOUNT OF THE

BUDGETED OT LABOR THAT SHOULD HAVE BEEN EXPENDED

TO DATE (ACTUAL MINUS THE PRODUCT OF THE PERCENT

OF THE PERIOD ELAPSED AND BUDGET)

OT M/P,'D -

[BUDGETED OT MAN PER DAY + ACTUAL OT MAN PER

DAY + PERCENTAGE OF OT M/P/D + OT M/P/D
VARIANCE]

OT M,!P'D VARIANCE -

* ACTUAL OT M,'P/D MINUS THE AMOUNT OF THE

BUDGETED OT M,'P,"D THAT SHOULD HAVE BEEN EXPENDED

TO DATE (ACTUAL MINUS THE PRODUCT OF THE PERCENT

OF THE PERIOD ELAPSED AND BUDGET)

OTHER COSTS =

OTHER BUDGETED COSTS INCLUDING PRIMARILY

CONTRACTS AND TRAVEL

OTHER (PRIMARILY CONTRACTS AND TRAVEL) =

[BUDGETED OTHER + ACTUAL OTHER + PERCENTAGE OF

OTHER + OTHER VARIANCE]

OTHER VARIANCE =
* ACTUAL OTHER MINUS THE AMOUNT OF THE

BUDGETED OTHER THAT SHOULD HAVE BEEN EXPENDED

TO DATE (ACTUAL MINUS THE PRODUCT OF THE PERCENT

OF THE PERIOD ELAPSED AND BUDGET)

OTHERS (OPERATIONS) (93)=
*LABOR COSTS OF PERSONNEL (OTHER

THAN THOSE SPECIFIED AS CHARGED TO

COST CLASS 91 AND 92) WHOSE
PRINCIPAL DUTIES ARE DIRECTLY

RELATED TO CONDUCTING OR SUPPORTING

93

U .,,. ." r .. •,'r ,,-,- _' . ,,.. . ., -, ''"'' .z'" :",-.-.-.".,.. ,,,. : :., .-.- ,:., .. .,-,- : ,- :, ,. ' ,.

THE ADP FUNCTION*

OVERHEAD EXPENSES BY COST CLASS -

[FUNDS ADMIN (CODE NO.) + COST

CENTER NO. + STRAIGHT TIME WORKING

HOURS 4- (COST CLASS NO.} + {CATEGORY

TITLE} + (MEN GROSS} + (MEN IVB} + (MEN

OTHER) + {MEN TOTAL) + {STRAIGHT HOURS)

+ {AVERAGE BASE) + (STRAIGHT LABOR SS} +

{OVT MEN) + {OVT HOURS} + {AVE OT RATE) +

{OVT LABOR) + (TOTAL MNDAY) + TOTAL

HOURS) + (TOTAL LABOR SS) + TOTAL MATER)

+ {OTHER COSTS) + (TOTAL COST) + (TOT

EXPEN J

OVT HOURS = *NUMBER OF OVERTIME HOURS *

OVT LABOR =
• PRODUCT OF OVERTIME HOURS AND AVERAGE

OVERTIME RATE

OVT MEN =PERSONNEL ON OVERTIME (NOT USED)

PERCENTAGE OF MATERIAL AMOUNT -

* PERCENTAGE OF BUDGETED MATERIAL

AMOUNT INCURRED TO DATE WITHIN A

COST FUNCTION *

PERCENTAGE OF OT HOURS =

• PERCENTAGE OF BUDGETED TOTAL
OVERTIME TIME MANHOURS ACTUALLY INCURRED TO

DATE WITHIN A COST FUNCTION *

PERCENTAGE OF OT LABOR AMOUNT-
• PERCENTAGE OF BUDGETED OVERTIME LABOR

AMOUNT INCURRED TO DATE *

PERCENTAGE OF OTHER =

* PERCENTAGE OF BUDGETED OTHER

94

AMOUNT INCURRED TO DATE WITHIN A

COST FUNCTION *

PERCENTAGE OF ST HOURS =

•PERCENTAGE OF BUDGETED TOTAL STRAIGHT

TIME MANHOURS ACTUALLY INCURRED TO

DATE WITHIN A COST FUNCTION *

PERCENTAGE OF ST LABOR AMOUNT =

* PERCENTAGE OF BUDGETED STRAIGHT TIME LABOR

AMOUNT INCURRED TO DATE*

PERCENTAGE OF TOTAL AMOUNT=

* PERCENTAGE OF BUDGETED TOTAL

DOLLAR AMOUNT INCURRED TO DATE

WITHIN A COST FUNCTION*

PROGRAMMING (9113) =

* ALL LABOR AND OTHER COSTS IDENTIFIABLE AS

OVERHEAD OF THE ANALYSIS AND PROGRAMMING

DIVISION, EXCEPT FOR COSTS IDENTIFIED TO
COST FUNCTION 9119*

QC/PRODUCTIVITY (9144) =

* ALL LABOR AND OTHER COSTS ASSOCIATED
WITH THE PRODUCTIVITY IMPROVEMENT PROGRAM *

QUERY RESPONSE =

' BUDGET ANALYST RESPONSE TO AD HOC QUERIES*

RENTAL AND COMMUNICATION (94) =

* ALL ADP EQUIPMENT RENTALS,

INCLUDING RELATED ANCILI.ARY

COMMUNICATION EQUIPMENT RENTALS;

ALSO CHARGED WITH TELEPHONE

COMMUNICATION SERVICE COSTS

ASSOCIATED WITH UNIQUE OR

DEDICATED LINES USED IN SUPPOR T

95

A-R193 264 DSS (DECISION SUPPORT SYSTEM) DEVELOPMENT EFFORTS AT 2/'4
THE MARE ISLAND NAVAL SHIPYARD(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CA M F RALL ET AL. MAR 67

UNLF1SIFIED F/O 5/1 NI.

mohohhEEEohmhE

0L. Z3

,,, \

1I111II I II III2.O1j.2

111111L25 11111 .4 111.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARDS 1963 A

wN w w .T - ... u. :. ,P ,.4 w au w *I
-- , ., , ,, .- ,, , , .. , , • . .

OF THIS EQUIPMENT

RENT OF EQUIPMENT AND INSTALLATION COST (9114) "
•ALL COSTS OF ADP/EAM RENTAL AND MAINTENANCE

INCLUDING THE COST OF RENTING TERMINALS

EXCLUDING MINICOMPUTERS CHARGEABLE TO
BENEFITING COST CENTERS AND COST CLASS 37*

SHOP GENERAL (04) -

* INDIRECT COSTS OF SUPPLIES AND LABOR OF

NON-SUPERVISORY UNGRADED PERSONNEL WHILE
ENGAGED IN WORK OR A GENERAL OVERHEAD

NATURE BUT NOT OTHERWISE CHARGEABLE TO

ANOTHER COST CLASS OR AS DIRECT LABOR *

ST HOURS

[BUDGETED ST HOURS + ACTUAL ST HOURS + PERCENTAGE

OF ST HOURS + ST HOURS VARIANCE]

ST HOURS VARIANCE-

'ACTUAL ST HOURS MINUS THE AMOUNT OF THE
BUDGETED ST HOURS THAT SHOULD HAVE BEEN

EXPENDED TO DATE (ACTUAL MINUS THE PRODUCT
OF THE PERCENT OF THE PERIOD ELAPSED AND

BUDGET)

ST LABOR AMOUNT-
[BUDGETED ST LABOR AMOUNT + ACTUAL ST LABOR

AMOUNT + PERCENTAGE OF ST LABOR AMOUNT + ST

LABOR VARIANCE]

ST LABOR VARIANCE =

• ACTUAL ST LABOR MINUS THE AMOUNT OF THE
BUDGETED ST LABOR THAT SHOULD HAVE BEEN

EXPENDED TO DATE (ACTUAL MINUS THE PRODUCT
OF THE PERCENT OF THE PERIOD ELAPSED AND

BUDGET)

96

.a

ST M/P/D -

[BUDGETED ST MAN PER DAY + ACTUAL ST MAN PER DAY
+ PERCENTAGE OF ST M/P/D + ST M/P/D VARIANCE]

ST M/P/D VARIANCE -
* ACTUAL ST M/P/D MINUS THE AMOUNT OF THE

BUDGETED ST M/P,'D THAT SHOULD HAVE BEEN EXPENDED
TO DATE (ACTUAL MINUS THE PRODUCT OF THE PERCENT

OF THE PERIOD ELAPSED AND BUDGET)

STRAIGHT HOURS - 'SYNONYM FOR STRAIGHT TIME WORKING

HOURS'

STRAIGHT LABOR SS
*PRODUCT OF AVERAGE BASE AND STRAIGHT HOURS *

STRAIGHT TIME WORKING HOURS -

* LABOR HOURS WITH LEAVE
SUBTRACTED (NUMBER OF HOURS *

2008 HOURS AVAILABLE IN A YEAR)*

SUPERVISION GRADED (02) -

* INDIRECT LABOR COST OF GRADED
SUPERVISORY PERSONNEL WHILE ENGAGED IN

THE SUPERVISION OF OTHERS

SUPERVISION GRADED (91) "

'LABOR COST OF PERSON'EL WHILE ENGAGED
IN THE SUPERVISION AND DIRECTION OF

PERSONNEL PERFORMING ADP FUNCTIONS*

TOTAL AMOUNT -

[BUDGETED TOTAL AMOUNT + ACTUAL TOTAL AMOUNT

+ PERCENTAGE OF

TOTAL AMOUNT + TOTAL

VARIANCE]

TOTAL COSTS -

'TOTAL BUDGETED COSTS (SUM OF TOTAL LABOR, TOTAL

97

MATER, AND OTHER COSTS *

TOTAL HOURS - *SUM OF ST HOURS AND OT HOURS

TOTAL LABOR SS -
* DOLLAR SUM OF THE PRODUCT OF ST HOURS AND AVE

BASE AND THE PRODUCT OF OT HOURS AND AVE OT RATE *

TOTAL MATER -TOTAL BUDGETED MATERIAL COST

TOTAL MNDAY -TOTAL PERSONNEL (OVERTIME AND MEN)

TOTAL VARIANCE -

* ACTUAL TOTAL MINUS THE AMOUNT OF THE
BUDGETED TOTAL THAT SHOULD HAVE BEEN EXPENDED

TO DATE (ACTUAL MINUS THE PRODUCT OF THE PERCENT
OF THE PERIOD ELAPSED AND BUDGET)

TRAINING (39) -
* INDIRECT EXPENSES INCIDENT TO ORGANIZED

TRAINING PROGRAMS EXCEPT APPRENTICE AND
NUCLEAR TRAINING PROGRAMS

TRAINING (99) -

* TRAINING COSTS IN SUPPORT OF THE ADP FUNCTION *

TRAVEL (30) -

* COST OF APPROVED TRAVEL, INCLUDING SUBSISTENCE,
WHEN NOT CHARGEABLE TO A PARTICULAR CUSTOMER

ORDER OR COST CLASS BY TYPE

UNALLOCATED (CODING REJECTS) (19) -

* COSTS WHICH CANNOT BE
IDENTIFIED WITH A CUSTOMER
ORDER OR AN ESTABLISHED

EXPENSE ACCOUNT

98

. ,, , .%.-,., . ,. .€', . . ., ,.e , e . .7. . .e . -.,",. ... ,., , . .,.. ',, . , . .,,".e , .,.- ,:. , e . v - ..-

4. AUTOMATED DATA DICTIONARY

a. Method

The data dictionary is automated, although it is not an integral part of the

Cost Center Analysis system. Instead of being a part of the system, it explains the
various parts of the the system. This data dictionary was set in the form of data tables

in Oracle. Although some of this information can be generated from Oracle system
utilities, it was felt that more specific information was necessary for this system's

documentation.

b. Data Representation

The following tables represent two information tables. These are

representative of the structure shown in the system data structure diagrams (Bachman

diagrams). Although this system was designed for personnel who are intimately

familiar with the Cost Center terminology, we attempted to explain as much as

possible data meanings and abbreviations. This was done to facilitate the work of

follow-on designers and implementors.

In addition, there are five systems description tables which provide the data

base structure. These make up a ready reference for follow-on implementors, reducing

the chances of misunderstanding.

c. Data Maintenance

This data dictionary has been designed for an extracted data base. It would

be kept current by biweekly downloads from the shipyard's Prime Network. As such
the system would grow to considerable size by the end of the fiscal year.

These system updates would not change the structure of the data dictionary as

depicted. It would only change the number of records within the tables.

d. Data Security

Physical security controls are adequate for this system. Physical internal
controls will ensure the integrity of the data base. These controls are already in place

within the office workspaces.

If information security became more critical, these controls could be
implemented through the Oracle DBMS. by using passwords and controlling access.

e. Back-up and Recovery

This is provided by the Oracle DBMS as part of its services to the users.

Oracle uses a before image file to provide the recovery information.

99

f. Budget Table Structure

UFI >SELECT *FROM COL WHERE TNAME - 'BUDGET'

TNA ME COLNO CNVAMVE
CCL TYP WIDTH

SCALE NULLS

BUDGET I COST-FUN-NO

CHAR 4

NOT NULL

BUDGET 2 COST CL NO

CHAR 2

NOT NU LL

BUDGET 3 ST HOURS

NUMBER 7

1 NULL

BUDGET 4 OT HOURS

NUMBER 7

1 NULL

BUDGET 5 ST LABOR

NUMBER 7

1 NULL

BUDGET 6 OT LABOR
NUMBER 11

4 NULL

BUDGET 7 MATERIAL
NUMBER I I

4 NULL

%
100

JOIK

BUDGET 8 OTHER
NUMBER 11

4 NULL

g. Expense Table Structure

UFI > SELECT * FROM COL WHERE TNAME - 'EXPENSE'

TNAME COLNO CNAME

COLTYPWIDTH WIDTH

SCALE NULLS

EXPENSE 1 COST FUNNO

CHAR 4

NOT NULL

EXPENSE 2 COST CL NO

CHAR 2

NOT NULL

EXPENSE 3 DT

DATE 8
NOT NULL

EXPENSE 4 ST HOURS

NUMBER 7
1 NULL

EXPENSE 5 OT HOURS

NUMBER 7
I NULL

EXPENSE 6 ST LABOR

NUMBER II
4 NULL

I0

*,.k. . . *~***- * * . . . % . ', % - . . -

.

EXPENSE* 7 OT LABOR
NUMBER 11

4 NULL

EXPENSE 8 MATERIAL

NUMBER I
4 NULL

EXPENSE 9 OTHER
NUMBER 1

4 NULL

h. System Files

I. System File Listing Structure

LFI >SELECT * FROM COL WHERE TNAME - 'FILES'

TN\AME COLNO CNAME

COLTYP WIDTH
SCALE NULLS

FILES I FILEID

CHAR 15
NULL

FILES 2 STRLCTYPE

CHAR 8
NULL

FILES 3 FILETYPE

CHAR 8
NULL

1 02

FILES 4 LOCATION

CHAR 8

NULL

FILES 5 LASTMOD

CHAR 9

NULL

FILES 6 COMMENTS

CHAR 70

NULL

2. System File Listing

UFI > SELECT * FROM FILES;

FILEID STRUCTYP FILETYPE LOCATION LASTMOD

COMMENTS

BUDGET TABLE DATA D DISK 1 I-DEC-86

CONTAINS BUDGET FOR ST HOURS, OT HOURS, ST LABOR, OT LABOR,

MATERIAL AND OTHER

EXPENSE TABLE DATA D DISK 11-DEC-86

CONTAINS EXPENSES FOR HOURS, LABOR, MATERIAL AND OTHER BY

DATE

BCF INDEX DATA D DISK 11-DEC-86

INDEX BY COST FUNCTION FOR BUDGET TABLE

BCC INDEX DATA D DISK 11-DEC-86

INDEX BY COST CLASS FOR BUDGET TABLE

ECF INDEX DATA D DISK 11-DEC-86

INDEX BY COST FUNCTION FOR EXPENSE TABLE

ECC INDEX DATA D DISK 1 I-DEC-86

103

INDEX BY COST CLASS FOR EXPENSE TABLE

i. Programs and Modules

1. Programs Listing Structure

UFI> SELECT * FROM COL WHERE TNAME - 'PROG';

TNAME COLNO CNAME

COLTYPWIDTH

SCALE NULLS

PROG 1 PROGID

CHAR 14

NULL

PROG 2 FULLID

CHAR 35

NULL

PROG 3 LANGUAGE

CHAR 6

NULL

PROG 4 LASTMOD

CHAR 9

NULL

PROG 5 COMMENTS

CHAR 70

NULL

2. Programs and Mfodules of the System

UFI> SELECT * FROM PROG;

104

m i q .HjG r¢ ' Qd €I-p. . ,,, . , - . . d".p. I . % .e.....m

PROGID FULLID LANGUA LASTMOD

COMMENTS

CCA COST CENTER ANALYSIS
C 11-DEC-86

MAIN MODULE CONTAINS THE THREE MODULES OF THE SYSTEM

GRAPHICS GRAPHIC DISPLAY OF DATA
C 11-DEC-86

ALLOWS USER TO USE DEVELOPED GRAPHS

COMDLEV COMMAND LEVEL
C 1 I-DEC-86

ALLOWS USER TO USE ORACLE AT THE COMMAND LEVEL

CCI COST CENTER INFORMATION

C 11-DEC-86

MAIN MENU DRIVEN SHELL FOR ORACLE

UFI USER FRIENDLY INTERFACE
C 1 I-DEC-86

ORACLE UTILITY

BUDEXP BUDGET VS EXPENSES
C 1 I-DEC-86

DISPLAY AND COMPARISON ON BUDGET AND EXPENSE INFORMATION

INDVDISP INDIVIDUAL DISPLAY
C 1 I-DEC-86

BUDGET VS EXPENSES BY LABOR, MATERIAL OR OTHER 9

GETBUD BUDGET SUMMARY

C I I-DEC-86
DISPLAYS BUDGET BY COST FUNCTION, COST CLASS

TOBUDEXP TOTAL BUDGET VS EXPENSE
C I I-DEC-86

SUMS LABOR. MATERIAL AND OTHER FOR BUDGET AND EXPENSES

105

I.'

~ A L . A. &.

j|

GETLAB DISPLAY LABOR

C 1 I-DEC-86

BUDGET VS EXPENSE BY COST FUNCTION/ COST CLASS FOR LABOR

COMMENTS

GETHOUR DISPLAY HOURS

C 1 I-DEC-86

BUDGET VS EXPENSE BY COST FUNCTION/COST CLASS FOR HOURS

GETMAT DISPLAY MATERIAL

C 11-DEC-86

BUDGET VS EXPENSE BY COST FUNCTION'COST CLASS FOR MATERIAL

GETOTH DISPLAY OTHER

C 1 I-DEC-86
BUDGET VS EXPENSE BY COST FUNCTION,'COST CLASS FOR OTHER

SELFUN SELECT FROM EMPLOYEE
ORACLE 11-DEC-86

SELECT FROM BUDGET BY COST FUNCTION e

GETTOTF TOTAL BY COST FUNCTION

C I I-DEC-86
SUMS BUDGET AND EXPENSES BY COST FUNCTION

GETTOTC TOTAL BY COST CLASS

C 1 I-DEC-86

SUMS BUDGET AND EXPENSES BY COST CLASS

GETTOTFC TOTAL BY COST FUNCTION/COST CLASS
C II-DEC-86

SUMS BUDGET AND EXPENSES BY COST FUNCTION'COST CLASS

GETSUM TOTAL BY COST CENTER

C 11-DEC-86
SUMS BUDGET AND EXPENSES FOR THE ENTIRE COST CENTER

106

SELHOUR SELECT FROM BUDGET

ORACLE I I-DEC-86

SELECT HOURS FROM BUDGET TABLE

SELLAB SELECT FROM BUDGET

ORACLE 11-DEC-86

SELECT LABOR FROM BUDGET TABLE

SELMAT SELECT FROM MATERIAL

ORACLE 11-DEC-86

SELECT MATERIAL FROM BUDGET TABLE

SELOTH SELECT FROM BUDGET

SELECT OTHER FROM BUDGET TABLE ORACLE 11-DEC-86

SELEHOUR SELECT FROM EXPENSE

ORACLE 1 I-DEC-86

SELECT HOURS FROM EXPENSE TABLE SELELAB SELECT FROM

EXPENSE ORACLE 11-DEC-86
SELECT LABOR FROM EXPENSE TABLE

SELEMAT SELECT FROM EXPENSE
ORACLE 11-DEC-86

SELECT MATERIAL FROM EXPENSE TABLE

SELEOTH SELECT FROM EXPENSE

ORACLE 11-DEC-86

SELECT OTHER FROM EXPENSE TABLE

SELBFUN SELECT FROM BUDGET

ORACLE 1 I-DEC-86

SELECT FROM BUDGET BY COST FUNCTION NO.

SELEFUN SELECT FROM EXPENSE

ORACLE 11-DEC-86
SELECT FROM EXPENSE BY COST FUNCTION NO.

107

SELBCL SELECT FROM BUDGET

ORACLE I-DEC-86
SELECT FROM BUDGET BY COST CLASS

SELECL SELECT FROM EXPENSE

ORACLE I I-DEC-86
SELECT FROM EXPENSE BY COST CLASS

SELBCFCL SELECT FROM BUDGET

ORACLE I-DEC-86
SELECT FROM BUDGET BY COST FUNCTION/COST CLASS

SELECFCL SELECT FROM EXPENSE

ORACLE I I-DEC-86
SELECT FROM EXPENSE BY COST FUNCTION/COST CLASS

SELSUM SELECT FROM BUDGET

ORACLE 11-DEC-86
SELECT TOTAL FROM BUDGET

SELSUMA SELECT FROM EXPENSE

ORACLE I-DEC-86
SELECT TOTAL FROM EXPENSE

j. Data Elements

I. Data Elements Table Structure

UFI> SELECT * FROM COL WHERE TNAME = 'ELEMENTS';

TNAME COLNO CNAME

COLTYP WIDTH
SCALE NULLS

108

- - . a.,
:, . .

ELEMENTS I ELEMENTID

CHAR 20
NOT NULL

ELEMENTS 2 FULLID

CHAR 40

NULL

ELEMENTS 3 TYPE

CHAR 10

NULL

ELEMENTS 4 SOURCE

CHAR 15

NULL

ELEMENTS 5 UPDATEFREQ

CHAR 10

NULL

ELEMENTS 6 COMMENTS

CHAR 60

NULL

2. Data Elements Listing

UFI > SELECT * FROM ELEMENTS;

ELEMENTID FULLID TYPE SOURCE

UPDATEFREQ COMMENTS

COSTCLNO COST CLASS NUMBER CHAR BUDGET

SELDOM SPECIFIES COSTCLASS BY NUMBER

COSTCLNO COST CLASS NUMBER CHAR EXPENSE

SELDOM SPECIFIES COST CLASS BY NUMBER

109

COST-FUNCNO COST FUNCTION NUMBER CHAR BUDGET

SELDOM SPECIFIES COST FUNCTION BY NUMBER

COST FUNQCNO COST FUNCTION NUMBER CHAR EXPENSE

SELDOM SPECIFIES COST FUNCTION BY NUMBER

DT EXPENSE DATA DATE DATE EXPENSE

SEMIWEEKLY SPECIFIES THE DATE OF THE EXPENSE DATA

OTHOURS BUDGETED HOURS OVERTIME NUMBER BUDGET

SEMIWEEKLY SPECIFIES HOURS BUDGETED FOR THE COST CENTER

STHOURS BUDGETED HOURS STRAIGHT TIME NUMBER

BUDGET SEMIWEEKLY SPECIFIES HOURS BUDGETED FOR THE COST

CENTER

OTHOURS EXPENSED HOURS OVERTIME NUMBER EXPENSE

SEMIWEEKLY SPECIFIES HOURS EXPENSED BY THE COST CENTER

STHOURS EXPENSED HOURS STRAIGHT TIME NUMBER

EXPENSE SEMIWEEKLY SPECIFIES HOURS EXPENSED BY THE COST

CENTER

OTLABOR BUDGETED LABOR COSTS OVERTIME NUMBER

BUDGET SEMIWEEKLY SPECIFIES LABOR BUDGETED FOR THE COST

CENTER

STLABOR BUDGETED LABOR COSTS STRAIGHT TIME NUMBER

BUDGET SEMIWEEKLY SPECIFIES LABOR BUDGETED FOR THE COST

CENTER

OTLABOR EXPENSED LABOR COSTS OVERTIME NUMBER

EXPENSE SEMIWEEKLY SPECIFIES LABOR EXPENSED FOR THE COST

CENTER

STLABOR EXPENSED LABOR COSTS STRAIGHT TIME NUMBER

EXPENSE SEMIWEEKLY SPECIFIES LABOR EXPENSED FOR THE COST

CENTER

110

* . 1

MATERIAL BUDGETED MATERIAL COSTS NUMBER

BUDGET SEMIWEEKLY SPECIFIES MATERIAL BUDGETED FOR THE

COST CENTER

MATERIAL EXPENSED MATERIAL COSTS NUMBER

EXPENSE SEMIWEEKLY SPECIFIES MATERIAL EXPENSED FOR THE

COST CENTER

OTHER BUDGETED OTHER COSTS NUMBER BUDGET

SEMIWEEKLY SPECIFIES OTHER BUDGETED FOR THE COST CENTER

OTHER EXPENSED OTHER COSTS NUMBER EXPENSE

SEMIWEEKLY SPECIFIES OTHER EXPENSED FOR THE COST CENTER

k. System Element Hierarchy

I. System Elements Hierarchy Table Structure

UFI> SELECT * FROM COL WHERE TNAME - 'CONT';

TNAME COLNO CNAME COLTYPE WIDTH SCALE

NULLS

CONT I IDI CHAR 15 NULL

CONT 2 TYPE1 CHAR 10 NULL

CONT 3 ID2 CHAR 16 NU L L

CONT 4 TYPE2 CHAR 10 NULL

2. Systems Elements Hierarchy Listing

UFI > SELECT* FROM CONT;

ID1 TYPE I ID2 TYPE2

111

EXPENSE TABLE COSTFUN NO ELEMENT

EXPENSE TABLE COSTCLNO ELEMENT

EXPENSE TABLE STHOLRS ELEMENT

EXPENSE TABLE STLABOR ELEMENT

EXPENSE TABLE OTHOLRS ELEMENT

EXPENSE TABLE OTLABOR ELEMENT

EXPENSE TABLE MATERIAL ELEMENT

EXPENSE TABLE OTHER ELEMENT

EXPENSE TABLE DT ELEMENT
BUDGET TABLE COSTFUN NO ELEMENT

BUDGET TABLE COSTCLNO ELEMENT

BUDGET TABLE STHOURS ELEMENT

BUDGET TABLE STLABOR ELEMENT

BUDGET TABLE OTHOURS ELEMENT

BUDGET TABLE OTLABOR ELEMENT

BUDGET TABLE MATERIAL ELEMENT

BUDGET TABLE OTHER ELEMENT

3. System Process Table Structure

UFI > SELECT * FROM COL WHERE TNAME - 'PROCESS';

TNAME COLNO CNAME COLTYP WIDTH

SCALE NULL

PROCESS 1 IDI CHAR

.20 NULL

PROCESS 2 TYPE I CHAR

10 NULL

PROCESS 3 ID2 CHAR

20 NULL

112

PROCESS 4 TYPE2 CHAR

10 NULL

4. Prws Lis t i

UFI > SELECT * FROM PROCESS;

IDI TYPEI ID2 TYPE2

CCA PROGRAM GRAPHICS PROGRAM

CCA PROGRAM COMDLEV PROGRAM

CCA PROGRAM CCI PROGRAM

GRAPHICS PROGRAM BAR PROGRAM

GRAPHICS PROGRAM TRIPBAR PROGRAM

GRAPHICS PROGRAM PLOT PROGRAM _

GRAPHICS PROGRAM COMBO PROGRAM

COMDLEV PROGRAM UFI PROGRAM

CCI PROGRAM BUDEXP PROGRAM

CCI PROGRAM EMPINFO PROGRAM

CCI PROGRAM JOINFO PROGRAM

BAR PROGRAM GRAF FILE

TRIPBAR PROGRAM G PA F FILE

PLOT PROGRAM BUD FILE

PLOT PROGRAM GRAF! FILE

COMBO PROGRAM GUA F FILE

COMBO PROGRAM GRAFI FILE

COMBO PROGRAM BUD FILE

UFI PROGRAM EMPLOYEE TABLE

UFI PROG R-M JOEMP TABLE

UFI PROGRAM JOBORD TABLE

UFI PROGRAM COST FUNC TABLE

UFI PROGRAM COST-CLASS TABLE

UFI PROGRAM BUDGET TABLE

UFI PROGRAM EXPENSE TABLE 1
113

9,

•-... -..' - . .. '. . . ; . .,

BUDEXP PROGRAM GETB'D PROGRAM

BUDEXP PROGRAM INDVDISP PROGRAM

BUDEXP PROGRAM TOTBUDEXP PROGRAM

INDVDISP PROGRAM GETLAB PROGRAM

INDVDISP PROGRAM GETMAT PROGRAM

INDVDISP PROGRAM GETOTH PROGRAM

INDVDISP PROGRAM GETHOUR PROGRAM

GETBUD PROGRAM SELFUN PROGRAM

TOTBUDEXP PROGRAM GETTOTF PROGRAM

TOTBUDEXP PROGRAM GETTOTC PROGRAM

TOTBUDEXP PROGRAM GETTOTCF PROGRAM

TOTBUDEXP PROGRAM GETSUM PROGRAM

GETLAB PROGRAM SELLAB PROGRAM

GETLAB PROGRAM SELELAB PROGRAM

GETHOUR PROGRAM SELHOUR PROGRAM

GETHOUR PROGRAM SELEHOUR PROGRAM

GETMAT PROGRM-XM SELMAT PROGRkAM

GETMAT PROGRAM SELEMAT PROGP.AM

GETOTH PROGRAM SELOTH PROGRAM

GETOTH PROGRAM SELEOTH PROGRAM

SELFUN PROGRAM BUDGET TABLE

GETTOTF PROGRAM SELBFUN PROGPA\

GETTOTF PROGRAM SELEFUN PROGRAM

GETTOTC PROGRAM SELBCL PROGRAM

GETTOTC PROGRAM SELECL PROGRAM

GETTOTFC PROGRAM SELBCFCL PROGRAM

GETTOTFC PROGRAM SELECFCL PROGRAM

GETSUM PROGRAM SELSUM PROGRAM

GETSUM PROGRAM SELSUMA PROGRAM

SELHOUR PROGRAM BUDGET FABLE

SELLAB PROGRAM BUDGET TABLE

SELMAT PROGRAM BUDGET TABLE

SELOTH PROGRAM BUDGET TABLE

SELEHOUR PROGRAM EXPENSE TABLE

SELELAB PROGRAM EXPENSE F.BLE

114

I~ t.,,,~x.,u , . . _-. 'a .. 'u. .. ' j . c : :.: / :.&. .V.'. -v..*-, .,. .,' .

SELEMAT PROGRAM EXPENSE TABLE

SELEOTH PROGRA.M EXPENSE TABLE

SELBFUN PROGRAM BUDGET TABLE

SELEFUN PROGRAM EXPENSE TABLE

SELBCL PROGRAM BUDGET TABLE

SELECL PROGRAM EXPENSE TABLE

SELBCFCL PROGRAM BUDGET TABLE

SELECFCL PROGRAM EXPENSE TABLE

SELSUM PROGRAM BUDGET TABLE

SELSLMA PROGRAM EXPENSE TABLE

5. UFI FILES

LFI iles can be used to create tables in Oracle. These iles allow the user to

input the information using in editor rather than interactively writh Oracle. The format

that Oracle accepts new data is also shown with the INSERT command. Two samples

of LFI rlies are shown below. Neither is complete as it stands. Only a small number

of records that need to be read into the tables are shown. In actuality, every

authorized cost function cost class must have an entry for both budget and for each

date of expense even if the values are all zeroes.

a. BUDGET.UVI

SYSTEM MANAGER

SET ECHO OFF

SET VERIFY OFF

SET TERMOUT ON

SET SCAN OFF

CREATE TABLE BLDGET(COSTFLN -NO CHAR(4) NOT NULL,

COST CL NO CHAR(2) NOT NULL,

OTHOURS NUMBER(7.1).

STHOURS NLMBERr7.1U

OTLABOR \LMBERl 11.-4).

STLABOR \UMBER(11.4).

MATERIAL NL MBER(I 1,4),

OTHER NUMBER(I 1.4));

SET SCAN ON

INSERT~~www'w INTO BUGE VALUSC9l2''0', 0',0','0'

INSERT INTO BUDGET VALUES('91I2', '03', 0', '0', '0',

INSERT INTO BUDGET VALUES('9112', '04','0', '0', '0',
150 ' 10, 0);

INSERT INTO BUDGET VALUES('9112', '04', '0', '0', '0',

INSERT INTO BUDGET VALUES('9112', '12', '0', '0', '0',
'0', '200, '50);

INSERT INTO BUDGET VALUESf'9Il2', '1', '41', '30', '16',

'100000' ', '0'); INSERT INTO BUDGET VALUES('9112', '93', '37',

'1800' '2000',
17540', .0','

INSERT INTO BUDGET VALUES('9119'. '43', '0', '0', '0',

INSERr INTO BUDGET VALUES('9 119'. '54', '0,'' 0',
0', '507340', '0')

INSERT INTO BUDGET VALUES('9119', '68', '0', '0', '0',

COMM IT;

CREATE INDEX BCC ON BUDGET(COST CL NNO);

UPDATE BUDGET SET LABOR - LABOR, 1000, MATERIAL -MATERIAL

p 1000),

OTHER - OTHER -1000;

GRANT SELECT ON BUDGET TO PUBLIC;

EXIT

b. IEXPENSE.UFI

SYSTE.'MANAGER

SET ECHO OFF

SET VERIFY OFF

SET TERNIOLT ON\

SET SCAN OFF

CREATE TABLE EXPE\SEiCOST FL \-\O CIIAR(4) NOT \L LL,

116b

COST CL NO CHAR(2) NOT NULL,

DT DATE NOT NULL,

OTHOURS NLMBER(7,I),

STHOURS NUMVBER(7,I),

OTLABOR NUMBER(1 1,4),

STLABOR NUMBER(1 1,4),

MATERIAL NUMBER(11,4),

OTHER NUMBER(1 1,4));

SET SCAN ON

INSERT INTO EXPENSE VALUES('9112', '02', '17-OCT-86',' 0',
1 0', ,' 0 '" o '0' ,0',);

INSERT INTO EXPENSE VALUES('91l2', '03', '17-OCT-86',' 0'.
lo0', 1 0',' 170', ' 0', ,0');

INSERT INTO EXPENSE VALUES('9112', '04', '17-OCT-86'.' 10',
'80','. 344',9' 2344', '2006', '16');

INSERT INTO EXPENSE VALUES('9112', 'I1F, '17-OCT-86',' 0',

INSERT INTO EXPENSE VALUES('9112', '12', '17-OCT-86'.' 0',
0' o' 0', 0', '5725', '929');

INSERT INTO EXPENSE VALUES('9112', '28', '17-OCT-86',' 0',
* 0',' 0','p 0', '0' '0')

INSERT INTO EXPENSE VALUES('9112', '30', '17-OCT-86',' 0',

0 ,' 0',' 0', '0', '4522');

INSERT INTO EXPENSE VALUES('91 12', '33', '17-OCT-86',' 0'.

0'' 0',' 0', '0' '0')

INSERT INTO EXPENSE VALUES('9112', '39', '17-OCT-86',' 0',
0'' 0'l, 0', '0', '0')

INSERT INTO EXPENSE VALL'ES('9112'. '43'. '1-7-OCT-86'.' 0'.
p .0'1 0',' 0'. '0',

INSERT INTO EXPENSE VALL'ES('91 12', '54', '17-OCT-86',' 0'.

INSERT INTO EXPENSE VALL'ES('9112'. '68', '17-OCT-86',' 0'.

117

INSERT INTO EXPENSE VALUES('9112', '91', '17-OCT-86',' 12',
1 140, ' 500', ' 4089', ' 0', , 0');
INSERT INTO EXPENSE VALUES('9112', '93', '17-OCT-86',' 0',

1 56', ' 01' 593', ' 0', ,0',);
INSERT INTO EXPENSE VALUES('91 12', '96', '1 7-OCT-86',' 0',

* 0' ' 0 0', '0', '498752');

INSERT INTO EXPENSE VALUES('9112', '97', '17-OCT-86',' 0',
1 0',' 0',' 0', '0', '0');

INSERT INTO EXPENSE VALUES('91 12', '98', '17-OCT-86',' 0',
1 0',' 0',' 0', '5235',

INSERT INTO EXPENSE VALUES('9112', '99', '17-OCT-86',' 0',
1 0',' 0', 0', ,0' ,0');

INSERT INTO EXPENSE VALUES('9113', '02', '17-OCT-86',' 0',

INSERT INTO EXPENSE VALL'ES('9113', '03', '17-OCT-86',' 0',

0'' 0',' 0', '0', '0');
INSERT INTO EXPENSE VALUES('9113', '04', '1 7-OCT-86',' 0',

0',' 0',' 0', ,0' , '0');
INSERT INTO EXPENSE VALCES('9113', '11', '17-OCT-86',' 0',

1 0',' 0',' 0', '0', t '0');
INSERT INTO EXPENSE VALUES('9113', '12', '17-OCT-86',' 0',

0','1 0.',' 0', '0' ,0');
INSERT INTO EXPENSE VALL'ES('9113', '23', '17-OCT-86',' o',

0 l',' 0',' 0', ,0', 0',);
INSERT INTO EXPENSE VALL'ES('9113', '28', '17?-OCT-86',' 0',

1 0',' 0',' 0', ,0' ,0');
INSERT INTO EXPENSE VALUES('9113', '30', '17-OCT-86',' 0',

1 0',' 0',' 0' ,0', 0 ');
INSERT INTO EXPENSE VALUES('9113', '32', '17-OCT-86',' 0',

1 0','1 0', 0', .0' ,0');
INSERT INTO EXPENSE VALL'ES('91 13', '39', '17-OCT-86',' 6',

1 10'', 3 31, ' 100', '0', ' 0');

INSERT INTO EXPENSE VALUES('91 13', '43', '17-OCT-86',' 0',
1 0 ',' 0',' 0', ,0', ,0') ;

INSERT INTO EXPENSE VALUES('91 13'. 5-4', '1-O0CT-86',' 0',

0', 00, %, '0', ')

INSERT INTO EXPENSE VALUES('911', '68', '17-OCT-86', 0',
0, 0'' 0', '0', ,0')

INSERT INTO EXPENSE VALUES('9113', '91', '17-OCT-86',' 67',
500',. 4007, 14026', '0 ., '0')

INSERT INTO EXPENSE VALUES('911Y, '92', 17-OCT-86',' 531',
2 000,' 1599', ' 43000', '0', '-594');

INSERT INTO EXPENSE VALUES('9113', '93', '17-OCT-867, 64',
1 800'', ' 2383', - 10000', ' 0' , '.0',);

INSERT INTO EXPENSE VALUES('9113', '96', '17-OCT-86',' 0',

0','. 079 0', ,0' ,0');
INSERT INTO EXPENSE VALUES('9113', '99', '17-OCT-86',' 0',

0','t 0',' 0', '0', ,0');
INSERT INTO EXPENSE VALUES('91 14', '04', '17-OCT-86',' 0',

0',' 0', 1 0', ,0'0, '0');j INSERT INTO EXPENSE VALUES('9 114', '12', '17-OCT-86',' 0',
1 0',' 0',' 0', ,0', 9 '0');
INSERT INTO EXPENSE VALUES('9114', '28', '17-OCT-86',' 0',

' 0',' 0',' 0', , 0 , 1 '0');
INSERT INTO EXPENSE VALUES('9 114', '30', '17-OCT-86',' 0',

1 01' ' 01'' 0', ,0', 9 '0');

INSERT INTO EXPENSE VALUES('9114', '32', '17-OCT-86',' 0',
1 0' , I'l. 0', 0' , '0 , '0);

INSERT INTO EXPENSE VALIJES(:114','33', '17-OCT-86',' 0',
1 01'' 0'.'01 , ')
INSRT NTOEXPENSE VALUES('9114', '43', '17-OCT-86',' 0't

1 0 ',' 0', 0' ,0', 0 '0');I

INSERT INTO EXPENSE VALUES('9114', '54', '17-OCT-86',' 0',

01' Ol 1 ', 0', '0' '0')

INSERT INTO EXPENSE VALUES('91 14', '68', '17-OCT-86',' 0',
U ,'1 0',' 0', ,0', 0 '0');

INSERT INTO EXPENSE VALL'ES('9114', '94', '17-OCT-86',' 0',

0' ' 01'' 0', '0', '4968');

INSERT INTO EXPENSE VALUES('9114', '95', '17-OCT-86',' 0',
0' , 0, ' 0', '0', '246');

119

INSERT INTO EXPENSE VALUES('91 14', '98', '17-OCT-86',' 0',
1 0',' 0',' 0', ,0' ,0');

INSERT INTO EXPENSE VALUES('9115', '02', '17-OCT-86',' 0',
1 0',' 0',' 0' ,0', 0');

INSERT INTO EXPENSE VALCES'9 115', '03', '17-OCT-86',' 0',
1 0',' 0',' 0', '0', 9 '0');
INSERT INTO EXPENSE VALUES('9115', '04', '17-OCT-86',' 0',
1 0',' 0',' 0',, 0, '0',);

INSERT INTO EXPENSE VALUES('9115', '11', '17-OCT-86',' 0',
1 0',' 0',' 0', '0' ,0');

INSERT INTO EXPENSE VALUES('9115', '12', '17-OCT-86',' 0',
1 01' ' 01'' 0', '0' ,0',);

INSERT INTO EXPENSE VALUES('9115', '28', '17-OCT-86',' 0',
1 0',' 0',' 0', , 0', 0 ');

INSERT INTO EXPENSE VALUES('9115', '30', '17-OCT-86',' 0',
1 0'' 0',' 0', ' 0' , '0');

INSERT INTO EXPENSE VALUES('9115', '32', '17-OCT-86',' 0',

0',' 0',' 0', ,0' , '0');
INSERT INTO EXPENSE VALUES('9115', '33', '17-OCT-86',' 0',

1 0 ',' 0',' 0', ,0' ,0');I

INSERT INTO EXPENSE VALlUES('9115', '39', '17-OCT-86',' 0',
1 0',' 0',' 0', ,0' ,0');

INSERT INTO EXPENSE VALUES('9 115', '43', '17-OCT-86',' 0',
1 0',' 0',' 0', '0' ,0');

INSERT INTO EXPENSE VALUES('9 115', '54', '17-OCT-86',' 0',

1 0',' 0',' 0', '0' ,0');
INSERT INTO EXPENSE VALUES('9115', '68', ' 17-OCT-86',' 0',

1 0',' 0',' 0', ,0' ,0',);
INSERT INTO EXPENSE VALUES('9115', '91', '17-OCT-86',' 0',

1 103' , ' 0', 2205', '0', ,0',);

INSERT INTO EXPENSE VALL'ES('9115', '93', '17-OCT-86',' 3',
901'' 50', ' 703', '0, '0');

INSERT INTO EXPENSE VALUES('91 16', '02', '17-OCT-86',' 0',

0', 0', 0', '0 ,, 0')

1 20

INSERT INTO EXPENSE VALUES('9116', '03', '17-OCT-86',' 0',
0',' 0',' 0', '0', '0')

INSERT INTO EXPENSE VALIUES('9116', '04', '1 7-OCT-86',' 4',

60' , ' 24', go00o'0,'0)

INSERT INTO EXPENSE VALUES('9116', '11', '17-OCT-86',' 0',
1 0',' 0',' 01, ,0', ' 0');

INSERT INTO EXPENSE VALUES('9116', '12', '17-OCT-86',' 0',
1 0',' 0',' 0', ,0' , '0');

INSERT INTO EXPENSE VALUES('9116', '28', '17-OCT-86',' 0',
1 0',' 0',' 0', ,0', f '0');

INSERT INTO EXPENSE VALUES('9116', '30', '17-OCT-86',' 0',
1 0','1 0',' 0', '0' , '0');

INSERT INTO EXPENSE VALUES('9116', '32', '17-OCT-86',' 0',
1 0',' 0',' 0', '0', '0');

INSERT INTO EXPENSE VALUES('9 116', '33', '17-OCT-86', o 0,I 0 ',' 0',' 0' ,0', 9'0');I
INSERT INTO EXPENSE VALU ES('9116', '39', '17-OCT-86',' 0',

0'' 0'9, 0', '0', '0')

INSERT INTO EXPENSE VALUES('9116', '43', '17-OCT-86',' 0',

1 0 ' ' 0 ' ' 0 ', ,0 , ' 0',);
INSERT INTO EXPENSE VALUES('9 116', '54', '17-OCT-86',' 0',

0' , 0', 0', 0', '0');
INSERT INTO EXPENSE VALUES('9116', '68', '17-OCT-86',' 0',

1 0 ',' 0',' 0', ,0' ,0',);
INSERT INTO EXPENSE VALUES('9116', '9 1', '17-OCT-86',' 5',

70' 93', ' 1400', '0', '0');
INSERT INTO EXPENSE VALUES('91 16', '93', '17-OCT-86',' 100',

1 718' , ' 473', ' 1 1000', ' 0' , '0');
INSERT INTO EXPENSE VALUES('9117', '02', '1 7-OCT-86',' 0',

1 0 ',' 0',' 0', '0' ,0',) ;
INSERT INTO EXPENSE VALUES('9117', '03', '17-OCT-86',' 0',

0',' 0',' 0', '0', '0')

INSERT INTO EXPENSE VALUES('9117', '04', '17-OCT-86',' 0',
0''0','1 0', '0' '0')

INSERT INTO EXPENSE VALL'ES('9117', '11', '17-OCT-86',' o',

1211

1 .,10',' 0', '0' '0')

INSERT INTO EXPENSE VALUES('9117', '12', '1 7-OCT-86',' 0',
1 0',' 0',' 0', '0' ,0');

INSERT INTO EXPENSE VALUES('9117', '23', '17-OCT-86',' 0',
1 0','o 0',' 0', ,0', 9'0');

INSERT INTO EXPENSE VALUES('9117', '28', '17-OCT-86',' 0',
1 0 ',' 0',' 0', '0', ,0',);

INSERT INTO EXPENSE VALUES('9 117', '30', '17-OCT-86',' 0',
0'o,'1 0',' 0', '0',, '0');

INSERT INTO EXPENSE VALUES('9117', '32', '17-OCT-86',' 0',
1 0 ',' 0',' 0', '0', ,0',);

INSERT INTO EXPENSE VALUES('9 117', '33', '17-OCT-86',' 0',
1 0',' 0',' 0', '0', ' 0');

INSERT INTO EXPENSE VALUES('9117', '3-9', '17-OCT-86',' 0',
1 0' ,' 0', p 0', '0)', '0');

INSERT INTO EXPENSE VALUES('9117', '43', '17-OCT-86',' 0',

0',' 0',' 0', '0' ,0')

INSERT INTO EXPENSE VALUES('91 17', '54', '17-OCT-86',' 0',
1 01' 0',' 0', '0', '0'),

INSERT INTO EXPENSE VALUES('9117', '68', '17-OCT-86',' 0',
1 0',' 0',' 0', ,0' , '0');

INSERT INTO EXPENSE VALUES('91 17', '91', '17-OCT-86',' 23',

200' , ' 78', ' 3800', '0', ,0');
INSERT INTO EXPENSE VALUES('9117', '93', '17-OCT-86',' 61',

1 1200', ' 190', ' 16000', '0' ,0',);
INSERT INTO EXPENSE VALL'ES('9117', '95', '17-OCT-86',' 0',

1 0',' 0',' 0', ,0' , '0');
INSERT INTO EXPENSE VALUES('9117', '96', '1 7-OCT-86',' 0',

1 0',' 0',' 0', '0' . '0');
INSERT INTO EXPENSE VA LLES('91 17'. '97', '1 7-OCT-86',' 0'.

0','0',' 0', '9654', '0');
INSERT INTO EXPENSE VALUES('9117', '99', '17-OCT.86',' 0',

1 0',' 0',' 0', '0' , '0',);
INSERT INTO EXPENSE VALLU'ES('9 118', '02', '1 7-OCT-86'.' 0',

0' '0''0', '0', '0')

1 22

INSERT INTO EXPENSE VALUES('9 112', '02', '31I-OCT-86',' 0',
1 0'' 0<. 0', '0' 9, '0');

INSERT INTO EXPENSE VALUES('9112', '03', '31-OCT-86',' 0',
1 0',' 0',' 0', '0', 9'0');

INSERT INTO EXPENSE VALCES('9112', '04', '31-OCT-86',' 181F,
1 01'' 4711', ' 0', '2006', '16');

INSERT INTO EXPENSE VALUES('9 112', '11', '31-OCT-86',' 6',

1 0 ' ' 7 5 ', ' 0 , ' 0'., ' 0'.);II NSERT I NTO EXPENSE VALUES('9112', '12', '3 1-OCT-86',' 0',
1 0',' 0',' 0', '6280', '929');,

INSERT INTO EXPENSE VALUES('9112', '28', '31-OCT-86',' 0',
1 0','1 0',' 0', ,'0', ,'0',);

INSERT INTO EXPENSE VALUES('9 112', '30', '31I-OCT-86',' 0',

','' 0',' 0', '0, '5950');

INSERT INTO EXPENSE VALUES('9112', '33', '31-OCT-86',' 0',
1 0','p 0',' 0', ,0', ,'0'.);

INSERT INTO EXPENSE VALUES('9112', '43', '31-OCT-86',' 0',

0','1 0'' 0'o ,'0'.9, '0',);

INSERT INTO EXPENSE VALUES('9119', '43', '31-OCT-86',' 0',
1 0',' 0',' 0', '0' '0')

INSERT INTO EXPENSE VALUES('9119', '54', '31I-OCT-86',' 0',

0'' 0',' 0', '0' 9, '0'.);

INSERT INTO EXPENSE VALUES('9119', '68', '31-OCT-86',' 0',
0','1 0',' 0', '0' '0')

COMMIT;

CREATE INDEX ECF ON EXPENSE(COSTFUN_NO);

CREATE INDEX ECC ON EXPENSE(COSTCLNO);

UPDATE EXPENSE SET LABOR - LABOR'1 1000, MATERIAL =MATERIAL

11000,
OTHER - OTHER;, 1000;

GRANT SELECT ON EXPENSE TO PUBLIC;

EXIT

123

APPENDIX B

COST CENTER ANALYSIS USER MANUAL (MINICOMPUTER)

1. INTRODUCTION
This system is designed to allow Cost Center managers the ability to track

expenses and compare them to budgeted amounts. In that way users can gain greater

insight into costs and the reasons behind them. This ability should give managers a

much clearer appreciation of where and how costs are being produced.

Graphic display of some of the numerical output is provided using TEL-A-

GRAF business graphic system.

2. REQUIREMENTS

Cost Center Analysis (minicomputer) is designed for a Prime 9755 computer with

on-line capabilities. The software is written in CPL, Prime's Command Processor

Language, and the TEL-A-GRLAF command language. The software requirements are

the CCA (minicomputer) program, TEL-A-GRAF, and the PRIMOS operating system.

3. STARTING THE SYSTEM

At the PRIMOS command prompt (OK, or ER,) type < R CCA> (do not type

the less than (<) or greater than (>) symbols) to activate the Cost Center Analysis

program. The "R" stands for RESUME. RESUME allows the user to interactively

run a CPL program. The operating system then looks for a "compiled and loaded

program." If it does not find the file, it will then look for the appropriate CPL file.

The CPL interpreter will then act on the program CCA.CPL and issue the appropriate

instructions to PRIMOS [Ref. 14: p. 1- 1-21.

The program's top level menu should then display. If it does not, check to see

that you are at the PRIMOS command prompt. If so, follow the above steps to load

CCA. Ensure you type the "R" before CCA.

4. MAIN MENU

With this version you are allowed two options (see Figure B.1). In future

versions more options may be added.

At the "Select One:" prompt you may respond with "T' or "Q" to identify your

desired option (see figure B.1). The system will validate your response, so the select

124

.1
:1

............
~ ~*- - i.".f ~ ~ *.-..**.* **.* * ".

TEL-A-GRAF GRAPHICS DISPLAY

Select One:

Figure B. 1 CCA Top Level Menu.
prompt will reappear if anything other than "T" or "Q' are entered. If you enter "Q-
you will leave CCA and be returned to the PRIMOS level at the command prompt

(OK,). Option 'T" will select the TEL-A-GRAF option, allowing you to produce
various graphs from standard formatting files. CCA.

After the system validates your response (T), you will be asked if you wish to go
directly to TEL-A-GRAF (see Figure B.2).

This gives you the option of entering TEL-A-GRAF immediately, without
selecting one of the standard graphs that are provided the user through CCA. Entering
TEL-A-GRAF at this level requires you to know the command language, and how to
format your data and include files. The include files contain the programs which TEL-

A-GRAF uses to produce the graphs. The data files contain the formatted data. The
novice or occasional user is cautioned to use the graphic formats provided by CCA.
The structure of the data and include files will be dealt with in more detail below.

If you do not wish to go directly to TEL-A-GRAF, select "N" or "NO". This
query will only accept a yes or no response.

I 125

L ,%* 5, i...-.

Q-r-LGAF GRAPHICS DISPLAY

Select One: T
Go directly to TEL-A-GRL.F?

Figure 8.2 Prompt for the user s response.

5. CHOOSE COST CENTER MENU
This menu allows the user to select the particular Cost Center he wishes to

investigate (see figure B.3). In this version only one Cost Center is provided. Future

versions could easily incorporate more.

At the "Select One:" prompt enter "l." This is the only response that C-C\ "XII
validate. An inappropriate response will cause the prompt to reappear.

6. GRAPH PLOT CODE MENU
This menu allows the user to select the type of standard graph he desires , see

figure 8.4).

Option 'A" gives the user the opportunity to produce a plot of budget to
expenses. Within the plot a bar chart of the budget data is overlaved. This _raph

provides the capability to study expense to budget vanances. and to quickl, de!,,t ti

how closely to budget the Cost Center is tracking.

Option"B" produces a bar chart of the expense to budget data. It displays that
information in "time elapsed." This allows the user to identify variances and also the
budget amount that should be expensed at the particular data date.

126

- r ; ¢ .e/ ,.. ..¢ .. ? $ ".. . . . / e%. : 5..

CHOOSE COST CENTER

1 9110

Select One:

Figure B.' Prompt "or the user s response.

Option 'C' develops a composite of four variance graphs: Percent Expended,

Data Normalized on Percent Elapsed Time. Variance in Dollars. and Percent Variance.
These bar charts show whether the particular expenses accrued have positive or

negative variances and their magnitudes.

7. PLOT OPTIONS MENU

This menu allows the user to further define the particular graph selected (see
figure B.5.

Option 'A- causes the graph produced to display the total budget and expenses
of the Cost Center selected. Bar Graphs will be broken down by Cost Functions
within the Cost Center.

Options '2" through '1" will provide .he data by particular Cost Function. On
the bar graphs the Cost Functions will be broken down by Cost Classes.

All expense data is of the most current date entered into the updated data files.

12-

.. .• ,. ,-. €; .:...: . ,/ . .-; .,. : .. .,.m- ,- .:

PLOT CODE:

A - PLOTO XPENSE TOBUDGET WITH
AR ART 0 BUDGEl OVERLAYED ON THE PLOT

B - BARCHART BY COST FUNCTION OF EXPENSE TO

C- COMPOSITE GRAPH OF

Select One:

Figure B.4 Plot Code Selections.

8. ENTER TEL-A-GRAF
At this point CCA will open TEL-A-GRAF and issue the appropriate commands

to produce the desired graph. The commands will scroll by on the screen and then you

will get a blank screen. In a few seconds the selected graph will be drawn on the

screen. After it is complete you may study the graph. To continue strike the

< ENTER> or < RETURN> key. You will be returned to the command language

level of TEL-A-GRAF. You may continue working at this level, if you know the

appropriate commands. To return to CCA, type <QUIT.>. You will then receive

the prompt in figure B.6 Typing "N" or -NO" will allow you to produce another graph V

through CCA. Typing "Y" or "YES" will return you to the PRIMOS command

prompt.

128
I.
1*
I.,

*1

6

PLOT OPTIONS:

15

-:118
119

Select One:

Figure B.5 Plot Option Selections.

Finished?

Figure B.3 Completion Quer'.

9. USING TEL-A-GRAF

TEL-A-GRPAF is a very powerful graphics system. With this power comes man%

options and different ways of accomplishing the same tasks. We shall discuss onl a

129

V.

few of them here. The TEL-A-GRAF User Manual [Ref 12), will answer most
questions you may have if you want to become more famliar with TEL-A-GRAF

a. Making Your Own Data Filds

.Many methods exist for entering data for a graph. We shall talk of only two

methods. The first is creating the data file from the editor, and the second is :nputing

the data while in TEL-AGRAF. All data must he inputed in rruihons of Joilars or i

Cost Center. For example, five hundred thousand dollars. S54N.'N).i) s represented

as .5 and one million dollars, SI.0000.(X), is represented as 1.0. When data is
inputed for a Cost Function, by Cost Class, it must be in thousands of dollars.

Variance data is in Dollars or decimal representation for percentages.

SIN PUT 1)A TA.

1Ou . .. 13234 3 4.33018.4 ofl)5 30 3, ; 0.2493 0 1..,2633

0-0898 8 0.56f"BL DGET"o'

I (608- 1.66322 3 3.3775.4 40.o4139 5 021379 1,15645 -S O.O'rO05 S e),56 "
'EXPENSES"

1 0.69411 " 1.303-4 3 3.3 1009 4 104.18 5).21- 33 o 1.10264 -oh0.06 5 3 4). 1 2 -

Figure B.7 TEL-A-GR.AF Data File for Triple Bar Chart.

1. Creating a Data File From the Editor.

Creating data files from the editor offers seerai Advantages to --nter:n *he

data interactively with TEL-A.GRAF F:rt. bx entering 'he data n :ne e mttr mtoue.
you can check the data for errors that may have occurred when entering the data.

Secondly, if several different sets of data are to be graphed prepositioning the data 'n

files will shorten the amount of time you will need to be at the graphics terrTunal

Lastly, if the data will be used later, % ou -kii not ia'e ,o input :t iain-

This is not a tutorial on how ,o use tne editor. [or inlornation in :ie

editors available and how to use them see the Prime Computer rraining \IanuaL

[Ref. 151

Figure B.7 is an example of a typical data file. This particular data was

used with the Triple Bar chart. However, the format is the same for all graphs. The

first line must be INPUT DATA. The period at the end of the line is very important

so do not forget it. The next line should be the name of the data. This name will

appear in any legend that you may want to produce. Next comes the actual data. The

data must be in X. Y pairs, the independent followed by the dependent. The comma

between the x.y is optional, a space will do. The data may also be written in column

form which makes changes and error checking much easier. In the include files we

shall discuss, all dependent values are 0 at the origin, followed by 1, 2, 3, 4, etc. The

label for each however, is not 1. 2. .3 etc. The labels have been given other names such
as the Cost Functions 9112. 9113. etc. The corresponding position is the number that

must be in the data tile. not the label.

If more than one set of data is to be graphed on that graph, the remaining

data can be entered in -he iame way. When all data is entered, the last statement must

be END OF DATA. The last statement shown in figure B.7 is the end of file symbol

for TEL-A-GRAF. This is optional for the user to put in because TEL-A-GRAF will

automaticallv write :t ,n the tile after it is done.

Without "he data base implemented you may think that this system is

useless. You can, however, enter your own data into the appropriate file to use one of

the graphs shown. Figure B.3 shows which data goes with which graphs. By entering

the updated information in the appropriate data file in the appropriate format, the

CCA menu system can be used with no knowledge of TEL-A-GR-F. Only knowing

.3ow -o)uiid I data 'ile .s -equired.

Data Fde (1rapn

)1 Budget Bar Graph in comer of composite graph
E110 Tril Bar GrapnI110 161 of budget vs expenses

\BI 0 ercent Expended Bar Graph for vanance analysis
\t Ito Oata Norrnalized on Precent Elapsed Time
VB II) Variance .n Doilars
PVI I) Percent Vanan,.e

Figure B.8 Name of Data Files \atched With the Appropriate Graphs.

.o

.-

• . S V .tY - . ") .* • . o S. *

The name of the data file consists of two parts, letters followed by

numbers. The letters may represent on of two things. In the composite graph, the bar

graph of the budget is linked with the data tile B 110. No matter which Cost Function

you select for the plot in the menu, the budget for the Cost Center broken down by

Cost Function is displayed in the corner. All other graphs are linked as shown is figure

B.8 . When graphing a Cost Function instead of the cost center, the data file's

numbers are the Cost Function number, with the exception of the bi10 series, which

always references bI10. For example, the data file linked to the triple bar graph for

Cost Function 9112 is BBEII2, for Cost Function 9113 is BBEIl3, and so on. This

convention holds for all classes of data file names.

2. Entering Data From Within TEL-A-GRAF

This process is more complicated than using the editor, and has a greater

potential for errors getting by. A knowledge of TEL-A-GRAF is necessary in order to

use this method. Either your own commands must be issued or, the files already

created can be included. Data is entered the same way as it is in figure B.7 . and as

explained in the previous section.

Since a knowledge of TEL-A-GILAF is necessary, this procedure assumes a

more sophisticated user. Modifying the existing graphs to suit your own needs and

using different data may be a useful technique for learning TEL-A.GRAF.

b. TEL-A-GRAF Commands

This section is designed to show you how to manipulate existing files that

TEL-A-GRAF uses. It is not designed to show you how to -rite original TEL-A-

GR.AF programs. Figure B.9 list the names of the programs and their relation with

other modules.

The main module for each graph contains the commands to generate a graph

from Cost Center 9110. The related graphs modify this basic graph to get the

appropriate labels and titles.

1. Using Existing Files

Existing files are brought in to TEL-A-GIL.,F through the use of the
INCLUDE command. The include command brings in a file which is then processed.

If more than one file is brought in, the first is processed, and changes or additions to

that file are made when the next include file is processed.

An example of a possible conmmand level interaction follows. Suppose you

have created a data file named BBE 112' fbr a triple bar graph of Cost Function 9112

I]
132

-.. *~d*

Graph Module Related Modules

Bar graph of Bud et BI none
Plot of udget vsgtxpense EX2 EXlI2, EXII3, EXlI 4, EX115

EXlI6 EX117 EXIIS EX1I9
Triple bar graph B4 B112, B113, Bf, BIB1,

B116, B1l7, B1S, B119
Percent Expended PERBAR none
Normalized on Time NORBAR noneVariance in Dollars VARBAR nonePercent Variance PERVAR none

Figure B.9 Graphic Program Module Relations.

broken down by Cost Class. The data file must contain a value for each authorized

Cost Class, whether it has been used of not.

The first prompt from TEL-A-GRAF is SPECIFY FILES. < RETURN >
is the appropriate response. Next you need to specify the data file. Next you must

include the first include file. This is the main module for the graph. For this example
it is 'B4'. Next you must specify the second include file to set the appropriate headings
and labels. In this example that file is BI12. Figure B.1O demonstrates the proper

sequence for this example.

SPECIFY FILES: < RETURN >

GENERATE LEVEL.ENTER:

< DATAFILE IS 'BBEI12'. >

GENERATE LEVEL.. ENTER:

< INCLUDE 'B4'. >

INCLUDE FILE BEING PROCESSED

ENTER MORE OR PERIOD:
< INCLUDE 'B112'.>

ENTER MORE OR PERIOD:

<GO.>

Figure B.10 Interactive Session with TEL-A-GRAF.

133

2. Appending Existing Files

If you went through the process of figure B.9 , but you were not satisfied,

you can make changes from inside TEL-A-GRAF. First you must type

"CONTINUE." This allows you to continue with the same graph. Now you can

change the data, the title, or anything else you wish. You can chang. the data file

either by specifying another data file as before, or by inputing the data by hand as

described in the data section. Changes in the title can be made by issuing commands

such as 'TITLE IS 'BUDGET VS EXPENSES FOR COST FUNCTION 9112'." This

will change the title to whatever you write.

For the user who wants to use TEL-A-GRAF at this level, further

information is available in the user manual [Ref. 12].

p

134

J

APPENDIX C
COST CENTER ANALYSIS USER MANUAL (MICROCOMPUTER)

I. INTRODUCTION
This system is designed to allow Cost Center managers the ability to track

expenses and compare them to budgeted amounts. Additionally, the user can identify

the jobs that have accrued these expenses. In that way users can gain greater insight

into those costs and the reasons behind them. This ability should give managers a

much clearer appreciation of where and how costs are being produced.

In addition to the query screen responses, the user can receive hardcopy

responses. Graphical display of some of the numerical output is also provided using

the systems graphic utilities.

2. REQUIREMENTS

Cost Center Analysis hardware requirements are an IBM PC,,XT,,AT with at

least 640K and a hard disk. A printer is optional for the output print options. The

software requirements are the Oracle Data Base Management System (DBMS),

PC; MS-DOS, and the Cost Center Analysis and Graphic Utilities programs, all

installed on the hard disk. In order to support CCA and the graphics utilities the

following utilities are required as well:

The CUL library from Essential Software Incorporated.4

GraphiC from Scientific Endeavours. 5

3. STARTING THE SYSTEM

The first step to begin the CCA program is to turn the computer on. This is

done by turning the switch on the power board. At the DOS command line type

., "Oracle" to activate the Oracle DBMS. This system is essential to the operation of

Cost Center Analysis. Version 1.0 will not call Oracle first, due to the memory

" requirements. It is hoped in later versions that this service will be provided for the

user.
A

4 C Utilities Library User Guide (Version 2.0) ESI, Maplewood, NJ 07040, 1985.5Rome. James A. and Georae 0. Keilev. GraphiC Version 2.1, Scientific

Endeavours. Rte. 4, Box -9. Kingston. "FN ',7-3, 1985.

L35

Once Oracle has displayed its logo and licensing information, type "CCA" to load

the Cost Center Analysis system. This places the user at the main menu.

4. MAIN MENU

COST CENTER ANALYSIS

1. Cost Center Information

2. Cost Center Information Using
Oracle Command Language (SQL for Ad hoc
Queries, Inserts, Deletes and Updates

Selection:

A blank line exits to DOS

Figure C.I Cost Center Analysis Main Menu.

At this point you are provided two options (see Figure C.1). If you select option

"I," you will be provided menus with preformatted queries. Using these menus

simplifies the task of accessing Oracle.

At times the menus may be too limiting or not ask the right questions; therefore,

option "2" allows you to use Oracle more directly through the Oracle User Friendly

Interface (UFI). To use the UFI. you need to understand the Oracle command

language to some degree. In the last section of this appendix we show examples of

how to use the command language to develop your own ad hoc queries, make

insertions, deletions or drop tables.

After exiting option "2," you will be returned to the A> prompt of DOS. If you
wish to reenter the system, it is not necessary to rerun Oracle. You will have to re-

enter "CCA' to return to the top menu of the Cost Center Analysis system.

In all menus, when entering options the system will not accept an inappropriate

response. Inappropriate values will cycle the user back to the menu he just tried to
query from. The system also requires you to verify your responses. If you wish to

change your answer, enter "N", or "n'" to the question "Is this correct?". The system

will blank your response and you can enter your change.

136

A blank line or a 0 will allow you to exit the present menu and return to the

menu directly "above" it.

Note: General instructions for menus will not be repeated under each

explanation unless they differ from the norm.

5. INFORMATION AVAILABLE

INFORMATION AVAILABLE

1. Budget VS Expenses

2. Job Order Information

Selection:

A blank line exits

.

Figure C.2 Information Available Menu.

This menu (see Figure C.2) identifies the classes of information that are available

to you.

Option "I" will introduce you to the numerical and computational information

available. This is the budget and expense information provided in various formats and

aggregations.

Option "2" directly addresses the Job Order information. It will show job orders

to budget and cost information.

6. BUDGET VS EXPENSES

This menu allows the user to analyze budget vs expenses under various

aggregations (see Figure C.3).

Option "1" provides the user with Total Budget vs Expenses information by Cost

Function, Cost Class, Cost Function and Cost Class, or Cost Center.

Option "2" allows the user to closely compare budgeted figures to actual expense

figures by either Labor, Material or Other.

137

. . .. ,-....-.. . 9 -. - . ..-. . ..--.- . .. :. :- -. -i :

BUDGET VS EXPENSES

1. Total Budget VS Expenses to Date

2. Labor or Material or Other

3. Budget by Cost Func,'Cost Class

Selection:

A blank line exits

Figure C.3 Budget vs Expenses Menu.

Option "3 gives the user the budget by Cost Function and Cost Class as it

would appear on the SBR-22A summary report:

1. A title will appear after you input your selection. Press any key to continue.

2. Select your desired response to the print option prompt. Note: the svstem willnot echo your response so be patient if it aears to take a little while. The
computer must handshake with the printer and this takes a little time.

3. After the screen displays, pressing a key will displav the next screen. Pressing a
"Q" will abort the resf o the inormation displayffor that Cost Function and
start the first page of the next cost function's budget.

4. After each Cost Function's budget is displayed you will be asked if you want
printed output for the next screen.

5. After the last Cost Function output, you will be returned to the Budget vs
Expenses menu.

7. TOTAL BUDGET VS EXPENSES

The first option gives you the total budget vs expenses by Cost Function (see

Figure C.4). It allows you to produce a data file for the graphics utilities by answering

yes to the graphics output question.

The second option gives you the Total Budget vs Expense by Cost Class. It also
can produce the data file for the graphics utility.

The third option provides you the total budget vs expenses information by Cost

Function and Cost Class.

The last option outputs the Total Budget vs Expenses by Cost Center. The

graphics data file is written if the user so selects.

All expense data is of the most current date entered into the data base.

138

A

"7

TOTAL BUDGET VS EXPENSES

1. Cost Function

2. Cost Class

3. Cost Function Cost Class

.. Cost Center

Selection:

A blank line exits

Figure C.4 Total Budget vs Expenses Menu.

CAUTION: Options "I" and "2- write to the same data file. If you select both
to create the graphics file during the same session, you will not overwrite but append

to the file. The graphics utilities are not designed to accept both types of data in the
same file. It is best to have one or the other, but not both types in the file. Option ".4"

writes two data files for the graphics utilities.

8. BUDGET VS EXPENSES (HOUR, LABOR, MATERIAL OR OTHERS)

BUDGET VS EXPENSES

I. HOURS

2. LABOR

3. MATERIAL

4. OTHER

Selection:

A blank line exits

Figure C.5 Budget vs Expenses by Hour, Labor, Material or Other.

139

This menu provides a further breakdown of budget vs expenses by Hours, Labor,

Material or Other (see Figure C.5).
Option '1 compares budgeted hours to expensed hours by Cost Function Cost

Class.

Option "Z' compares budgeted labor to expensed labor by Cost Function Cost

Class.

Option -3" compares budgeted to expensed material by Cost Function.Cost

Class.

Option "4" compares budgeted to expensed other by Cost Function,!Cost Class.

9. JOB ORDER INFORMATION MENU

JOB ORDER INFORMATION

1. Input Cost Function # Find Job Orders

2. Input Cost Class # Find Job Orders

Selection:

A blank line exits

Figure C.6 Job Order Information Menu.

This menu allows the user to select submenus which will list job order numbers

associated with a particular Cost Function, Cost Class (see Figure C.6).
Option "1" outputs job orders of the selected Cost Function number. See the

Cost Function Input Menu (Figure C.7)
Option '2" outputs job orders of the selected Cost Class numbers. See Cost

Class Input Menu (Figure C.3).

10. JOB ORDER NUMBER INPUT MENU

Enter the Cost Function portion first, and press <enter> (see Figure C.9).

Then enter the Cost Class portion of the number; press <enter>. Finally, enter the

1-40

VIC.0

INPUT THE COST FUNCTION NUMBER

Selection:

A blank line exits

Figure C.7 Cost Function Number Input Menu.

INPUT THE COST CLASS NUMBER

Selection:

A blank line exits

Figure C.8 Cost Class Number Input Menu.

Job Order Number and press <enter>. The system will require you to verify your

response. If you wish to make chL' es, type "N" or "n", and make the changes by
reentering all the values. Entering i blanks will return you to the Job Order

Information Menu.

14

THE JOB ORDER NUMBER

COST FUNCTION NUMBER

COST CLASS NUMBER

JOB ORDER NUMBER

A blank line exits

Figure C.9 Job Order Number Input Menu.

11. COST FUNCTION INPUT MENU

Enter the entire four digit Cost Function number, or else no records will be

selected by Oracle (see Figure C.7). Press <enter> when the numbers have been

inputed. The system will require you to verify your response. Respond to the printed

output prompt and then the information of the Cost Function will be displayed. After

the information display, type < enter> to return to the Job Order Information menu.

12. COST CLASS INPUT MENU

Enter the two-digit Cost Class number (see Figure C.8). Press <enter> after
inputting the number. The system will ask you to verifv the response. Respond to the
.printed output" prompt and the Job Order numbers for that particular cost class will

be displayed. A blank entry returns you to the Job Order Information menu.

13. GRAPHICS

The graphics portion of this system. due to memory constraints, is accessed

outside of the system through DOS commands. There are four graphs that the user

may view. Each graph is a separate file, so that the user may choose which graph to

display. The following is a short description of each graph and the files they access:

BAR.C is executed from DOS by typing 'BAR".

142

BUDGET
0

0

0

LOl

12 1i 114 1 15 116 1 17 118 1 19

Cost Function

Figure C.l10 Single Budget Bar Graph.

This module produces a single bar graph, represcnting the budget of each Cost Center

(see Figure C.lO). File accessed: GRAF

PLOT.C is executed from DOS by tping "PLOT-.

143

W , <

',,\-

or..

I zuJ

Suo l, (-D I

Figure C.1I1 Plot of Budget and Expenses.

This module produces a line graph. The solid line being the budget. with the !,token

line representing the expenses. It Is plotted by" nonth (see Figure C. 11). Fikles
Accessed: GRN. BU'D

Tripbar.c is executed firom DOS by ty-ping "1 RIPBAR".

0

V'/,/ - I

U' -El,

_ _- - _'_-_" - V

r..-,

suotl,(p

Figure C.12 Triple Bar Graph.

This module produces a Triple bar graph. I he middle bar represents the ,iudget !or

each cost center, left bar represents the expenses and the right bar represents the

percentage of the budget expended (see Figure C. 12). Filcs Accessed: G RAF

Combo.c is executed from DOS by typing "COMBO".

145

-J

V)

<F ZID
<0

CLC.... -

* -u,-... 0,(\ ,-

*Z C

O!* S ... ii- o
saoJ <

0i ~ ~ 0 f

Figure C.13 Plot of Budget and Expenses with Bar Graph Overlayed.

This is called directly from DOS after the CCA system has been processed. This

module produces a full page line graph, with the solid line representing the budget and

the broken line representing the expenses, by the month. Inset in the upper left hand

corner in a single bar graph, reduced in size that plots the budget for each cost Center.

Files Accessed: GRAFI, BUD, GRA-F

146

If the user is more experienced and plans to use the UFI portion of the system with the

graphics modules, he must know the names of the files that each graphic program

accesses. Please take note of the above information. After the graph has completed

execution, a beep will sound, and the user has a selection of options that he may

choose from. The following is a duplication of a menu that will appear if the user

presses the <space> bar:

I -- > large, low resolution plot
L -- > large, high resolution plot
m -- > medium sized high resolution plot
M -- > medium sized, high resolution plot
a > draw gnd on screen

- > quit and close tiles
z > zoom
w > zoom with window
1-9 -- > ship n pictures
C R.> go on to next plot

Figure C. 14 Allowable Modifications of Graphs.

See Figure C.14 for the menu of listed options provided the user. With those options.

the user has the ability to zoom in for more detail as well as modify the graph

produced.

If the user wishes to exit the graph and skip the above menu, he will just press

< enter >.

Samples of printed output of all graphs can be found on the following pages.

It should be noted that these programs, while short structurally, take

approximately 3 to 4 minutes to complete execution. While the program is displaying

the graph on the screen, line by line. it is creating another, faster executing file. If the

user executes the program BAR.C by typing "BAR", a corresponding file named

BAR.TKF is created. This file is executed by typing "play BAR.TKF".

This file is only a replay of the'program BAR.C, and will not contain current

data if the data base system has been accessed again. The advantages of having a

".TKF" file is speed. If the user wishes to review plotted data previously created, or if

the graphic display is being used in a presentation, there is no need to endure the

tedious wait of the main program.

The play option is provided as a utility with the GraphiC graphics library.

1.4V

0, , ., . . . , ", '% - % % % a . _ . '". . °% ° %

nL Pu E MP 11P -M S n '9 .0

14. AD HOC, UPDATES, DELETIONS, MODIFICATIONS WITH ORACLE

a. Introduction

Oracle, through UFI, provides you with many features and procedures.

Information can be extracted and displayed in many different ways. The menu driven

portion of this system allows you easy access to some of the information provided

through this system. However, all queries could not be anticipated and some people
prefer to use the command language instead of the menus. For these people we have

provided the option of using UFI to interface with Oracle. The UFI interface can also

be used to update the data base, delete rows, change attributes and even format

reports. We will give you a brief description to get you started. For further

information and for more advanced techniques, see the Oracle User Manual Vol. I

[Ref 161 that comes with the Oracle data base.

b. Getting in and out

The first thing you must know is how to get in and out of UFI. You must be

in the same directory as the execute file CCA.EXE. Then make sure you run Oracle

before running CCA. Type Oracle at the DOS command prompt as shown:

D > ORACLE

Then type CCA at the prompt.
D>CCA

When the first menu appears choose 2. If all goes well the next prompt

should look like this:

UFI >

You now should be in UFI. The authorized userid and password were

automatically issued in the call to UFI. When you are done and wish to exit type

EXIT at the UFI prompt.

UFI > EXIT

This will return you to the first menu again where you can reenter UFI, use

the menu driven queries, or exit to DOS.

c. Ad Hoc Queries
Once you are in UFI and have the UFI prompt, you are ready to begin. First

you must know the name of the tables you are dealing with, have an idea of the

information stored in each, and the relationships between tables. All this information

is contained in the data dictionary (Appendix A). In summary, the following are the

names of the tables associated with CCA:

1. EXPENSE

1418

2. BUDGET
The simplest query to make will give you all the information in a particular

table. To display this information at the prompt type:

UFI> SELECT * FROM BUDGET; This means select all the columns
from the table BUDGET. It will display all the information contained in the table. Be
sure to end each query with a semicolon.

Perhaps you do not want all the information in the table but only specific
columns. To display this information type at the prompt:

UFI> SELECT COSTFUNNO, COSTCLNO, STLABOR, FROM
BUDGET;

This will display three columns from the table BUDGET, namely Cost
Function number, Cost Class number, and Straight Time Labor for all rows in the
table. Notice the commas between the column names. There is no comma between
the last column name and the key word FROM. Once again the statement is ended

with a semicolon.

If you do no want all the rows but only specific rows, you can limit which
ones you get like this:

UFI>SELECT * FROM EXPENSE WHERE COSTFUN NO = '9112';

This will display all the information for every record in the EXPENSE table for cost
function 9112. The word of number must be exactly as it is in the data base, including
capital letters. In UFI, if you forget exactly how the data was entered. Oracle cannot
find a match. Again notice the semicolon at the end of the query.

The next step is to combine what we have learned to derive even more specific
information. Here is an example:

UFI>SELECT COSTFUNNO, COSTCLNO, STLABOR FROM

EXPENSE

2 WHERE COST FUNNO = '9118'

3 AND COSTCLNO = '54';

There are several things to notice on this query. First, it takes more than one line.
UFI automatically enters the numbers for each line. Commas are placed only between

149

l .

.

column names, but not between STLABOR and the key word FROM. The key word

AND must separate the predicates after the where statement. The values that you are

looking for must be in the same format as the data is stored, first letter capitalized and

the remaining in lower case. The entire query finally must be ended with a semicolon.

Now you can go and look for specific information from a single table. But

what if you want information that is contained in two different tables? Do you have to

write two different queries comparing the first to the second to find the information

you are seeking? No, because this would be the end of this tutorial.

d. Joins

Combining tables is known as a join. To join tables they must have a

common autribute (column). The name can be different but the values must be stored

the same way.

Let's look at an example. Suppose you want to look at budget compared to

expenses for a particular date that is in the data base. You want to join BUDGET and

EXPENSE. They have two common attributes COSTFUN NO and COSTCLNO

on which they can be joined. Lets look at this Oracle statement.

FI >SELECT BUDGET.STHOURS, BUDGET.STLABOR.EXPENSE.STHOURS,

2 EXPENSE.STLABOR FROM BUDGET, EXPENSE

3 WHERE BUDGET.COST FUNNO = EXPENSE.COSTFUNNO

4 AND BUDGET.COSTCLNO = EXPENSE.COSTCL NO

5 AND DT = '31-OCT-86";

This will display Straight Time Hours and Straight Time Labor costs for BUDGET and

EXPENSE values where the date DT is 31 OCT 86. Notice the attributes that are

joined on, COSTFUN NO and COST CL NO are both explicitly stated in the join.

The name of the table before the name of the attribute needs to be there only if :he

names in the tables are the same. Thus the attribute DT in EXPENSE does not have

to be written as EXPENSE.DT because there is no DT in the BUDGET table:

however, it could be if you prefer for the sake o'clarity.

e. Mathematical Manipulations

The next topic in Ad Hoc Queries is how to add, subtract, multiply, divide.

find the maximum and minimum numbers. We will look at addition. The Other

operators work in the same manner.

J150

. - . -%7- -. p

To add a column of numbers, the command is:

UFI >SELECT SUM(STLABOR) FROM BUDGET;

or

UFI> SELECT SUM(STLABOR), SUM(MATERIAL), SUM(OTHER)

2 FROM BUDGET;

This can also be done with a join:

UFI> SELECT SUM(BUDGET.STHOUR), SUM(EXPENSE.STHOUR)

2 FROM BUDGET, EXPENSE
3 WHERE BUDGET.COSTFUNNO = EXPENSE.COSTFUN NO

4 AND BUDGET.COSTCL .NO = EXPENSE.COSTCLNO

5 AND DT = '31-OCT-86';

Rows can also be summed up:

UFI> SELECT OTLABOR + STLABOR + MATERIAL + OTHER FROM
BUDGET;

Or you can sum both columns and rows at the same time.

UFI > SELECT SUM(OTLABOR) + SUM(STLABOR) + SUM(MATERIAL)+

2 SUM(OTHER) FROM BUDGET;

All of the mathematical manipulations are performed in the same way. Consult the

Oracle User Manual for more advanced mathematical manipulations.

f. Group By

Another useful command is the GROUP BY command. It is especially useful

in summarizing information, such as adding columns. Suppose you want the total

overtime hours budgeted by each cost function for the entire year. The command to

display this information is:

151

rn aspan npa~lMM n a WUXI .r Nd %WU WVT% M PXVNW .-v% M WV rJ VW VVW U WWSfJ V r- -

UFI > SELECT COSTFUNNO,SUM(OTHOURS) FROM BUDGET

GROUP BY COSTFUN_NO;

Without the GROUP BY COSTFUNNO, Oracle would not know how to display the

COST FUN NO with a sum. since sum returns one total value for all cost functions.
With the GROUP BY cost function. Oracle will return a sum for each cost function as

shown in Figure C. 15

COST FUNNO SUM(HOURS)

9112 20
9113 100
9114 450
9115 .,150
etc. for each cost function in the data base.

Figure C.15 Output of Using the GROUP BY Command.

g. Sub Queries

A sub query is also useful in summarizing data. A sub query is using another

select statement to return a value for the main query. An example might make this a

little clearer.

Suppose you want to find the total expenses to date but you do not know the

last date of the data in the data base. You could make two separate queries, one to

find out what the maximum date is and one to find the sums for that date. Or you

could combine it into one query as shown:

UFI> SELECT SUM(OTLABOR + STLABOR + MATERIAL+ OTHER)
FROM EXPENSE

2 WHERE DT = (SELECT MAX(DT) FROM EXPENSE);

The sub query returns the maximum value of the date DT which is then used to find

the sum. Notice that the rows are added first and then the sum of that resulting

column is found.

152

!m .,A.jm. w- n.,, E X. N W gWU VVVVV V , 1. .a,,." R03Mm ., W MJ't RI a,,, MR ,iVtMU -V UM . -M
. -- ,

M
.

U
-

Sub queries can also return a set of values. Refer to the user manual [Ref. 16]

for more on sub queries.

h. Updates

As stated previously, the updates will be handled through electronic transfers

of data from the Prime Network computer. The manager does have the option of

updating on his own, whether to make his data current before the update, or possibly

to assist in answering "What if" type questions. The manager could change expense

figures, or budget figures to see what effects changes have and then graph out the

results.

Updates can also be used to scale values or for global type changes. Or for

example, it could be used to change particular values. The following statement

multiplies each number in STHOURS of the BUDGET table by 60 to find the number

of minutes budgeted for cost function 9118.

UFI> UPDATE BUDGET SET STHOURS = HOURS * 60

2 WHERE COSTFUNNO = '9118';

Update can also be used to change one value:

UFI> UPDATE BUDGET SET MATERIAL = 6465

2 WHERE COSTFUN_NO = '9116'

3 AND COSTCLNO = '97';

i. Deletions

Deletions will generally be taken care of by the updates from the Prime

Network, semiweekly. You can make your own deletions if you wish, however.

UFI> DELETE FROM BUDGET

2 WHERE COSTFUNNO = '9112'
3 AND COSTCL NO = '02';

This statement would delete the row in the table BUDGET, where Cost Function is

9112 and Cost Class is 02. The same connand given on the EXPENSE table would

delete a row for every date whose Cost Function is 9112 and whose Cost Class is)2.

153

V.." -°. ''.-' - '' -.. " ' " " "-" '" ". .. ",,":", ",, *. " -' -, ". ". ,"" ',*, ", '. , ," 5 ,3 " -5": ., ' '€ "

j. Modifications

Modifications to the existing data base is not recommended on individual

bases. Since updates come from the Prime Network, any additions or deletions of

columns would make these updates impossible, unless all systems and the Prime

Networks reports in which the data is derived are also modified. Under special

circumstances a modification may be desirable. To accomplish this the ALTER

command is used.

UFI> ALTER TABLE BUDGET

2 ADD (YEAR DATE);

The data would then have to be inputted using the UPDATE command described

above.

Tables can also be created and destroyed by the CREATE TABLE and the

DROP TABLE commands respectively. The easiest way to create a table is to create

UFI files as presented in Appendix A. A sample of how to run UFI files is shown

below.

I. At the DOS prompt run Oracle.

C:ORACLE

2. When Dos Prompt returns type UFI followed by the at symbol above the 2. ca,
and then the UFI filename as shown.

C:UFI @BUDGET.UFI

3. This %ill create your table, insert the data and create any indexes as you entered
it into the UFI file. See Appendix A for sample UFI filis.

The CREATE command is used as shown below:

UFI > CREATE TABLE PROJ

2 (PROJNO NUMBER NOT NULL,

3 NAME CHAR(10));

A different view or subset of a table can also be created in a similar fashion:

UFI> CREATE VIEW TELEPlIONE %S

15-4

• e t ., " r., ,, .," ." • ,e, e, r € e v ,i/ . .,,..% . ;. .- , -..-..-.- '..'.- ..- '.,'.- ., ,'. '.-',. .- .- - "" "- .'.- d.9

2 SELECT LAST, FIRST, PHONE

3 FROM EMPLOYEE

4 WHERE EID < '400000000';

This table would allow you to look at the telephone numbers of employees

whose EID is less than 400000000.

The DROP command is used as follows:

UFI > DROP TABLE PROJ;

The table called PROJ will no longer be in the data base unless recreated.

k. Other Goodies

As mentioned earlier. Oracle is a powerful data base management system with

a variety of options and commands. Some of the more interesting ones would be ways

to present the data in a better format. Although the CCI module in the

microcomputer implementation of CCA does much of this for you, you could dress up

those answers to queries or even those provided in the CCI.

A few examples of the basic formatting commands include COLUMN,

TTITLE, BTITLE, BREAK, and COMPUTE. We shall look mostly at COLUMN

and TTITLE here but be aware that these Other commands exist if you need them.

COLUMN formats a column's heading and data. Instead of having COST FUNNO

printed out on a report, you can change it to COST FUNCTION as shown below:

UFI> COLUMN COSTFUNNO HEADING COST FUNCTION

UFI > SELECT COSTFUN NO, SUM(STLABOR) FROM BUDGET

2 GROUP BY COSTFUNNO;

TTITLE can then be used to place a title on the page.

UFI>TTITLE 'B U D G E T I I BY COST FUNCTION'

BTITLE puts a title at the bottom of a page.

BREAK breaks up the report into groups ot rows.

1 55

., '.-. .* ,'.,. ; " ,' . . ,. . -.

COMPUTE computes totals and subtotals on the report.

If you are interested in these commands see the User Manual for Oracle [Ref. 161.

I. Editing in UFI

To end this tutorial on the use of UFI, here are some tips on editing. The key

commands are CHANGE, LINE, RUN, LIST, INP, AND DEL. To demonstrate

these commands let us take a select statement:

UFI> SELECT STLABOR, MATERIAL

2 FROM BUDGET
3 WHERE COSTFUNNO = '9"l18

4 AND COSTCLNO > '91';

If'you run this and you wish to change something either because of an error or to get a

variation on the information, you do not have to type the command in all over.

UFI > LIST

This will list the last command you typed in. type:

UFI > LI

That will take you to line I and display:

1* SELECT STLABOR, MATERIAL

UFI > CHANGE/MATERIAL,'OTHER/

1* SELECT STLABOR, OTHER

Tnis command will change Material to Other in line I. To execute this type:

UFI > RUN

156

_ • . • . . ° °-. ° -. t -. ° ' q. q
°

" 'r %" " " " . °

mrrwvv- FWw.WVww NN

This will execute the entire statement. If you wzant to add lines to the current SQL

command use the INP command.

UFI > INP

5 GROUP BY COSTCLNO

6

This will add this line to the command. Del will delete the current line marked by the

UFI > LIST

SELECT LABOR, MATERIAL

2 FROM BUDGET
3 WHERE COSTFUN NO = '9118'

4 AND COSTCL_NO > '91'
5* GROUP BY COST_CL_NO;

UFI > DEL

Line 5 is now deleted and this SQL statement can be run.

This tutorial briefly describes a procedure that can be followed if you choose

to interface with Oracle at the command level. Remember that statements must end

with a semicolon and that if all else fails, use the Oracle User Manual [Ref. 16]. The
next page summarizes the procedures necessary to access the Ufl and key commands

to issue UFI and SQL commands.

in. Summary of UFI and SQL Commands for Command Level Processing

I. Turn on machine and allow to boot up.

2. Computer. boots up onto the A: or C: disk drive depending on the particularconliguration.

3. Type in CCA at the appropriate prompt as shown

C > CCA

4. The first menu gives you a choice of either menu driven or command line.
Choose 2 command line.

5. The following is a list of commands and the formats for using them:

SELECT ATTRIBUTE1,ATTRIBUTE2... FROM TABLEN."AME

157

I

9

WHERE ATTRIBUTEI - 'VALUE'

AND ATTRIBUTE2 - (SELECT ATTRIBUTE2 FROM TABLENAME

WHERE TIME - MAX(TIME);

UPDATE TABLENAME SET ATTRIBUTE 1 = ATTRIBUTE 1 100
WHERE ATTRIBUTEI > 10000;

JOINS:

SELECT ATTRIBUTE 1, ATTRIBUTE2. ATTRIBUTE3..

FROM TABLENAMEI, TABLENAME2
WHERE ATTRIBUTE I ATTRIBUTE2:

1 58

APPENDIX D
CPL AND TELL-A-GRAF PROGRAMS FOR PRIME MINICOMPUTER

1.CPL PROGRAMS
a. PR. CPL

/*(PR.cPL) PREPARE REPORTS

/* PROVIDE USER WITH REPORT PRODUCING CAPABILITY WITH TEL-A-GRAF

&IARGS ANS

/*DISPLAY TOP MENU

R DTS

/*GET USER RESPONSE AND VALIDATE

&SET-YAR FLAG -FALSE 1* INITIALIZE FLAG To FALSE

&DO &UNTIL %FLAG% = TRUE

&SETVAR, AI4S,: [RESPONSE 'Select One']

&DO CHECK &LIST S T Q

&IF %-ANS% = %CHECKs &THEN &SET..VAR FLAG TRUE

&END

&IF %FLAG% = FALSE &THEN &SET_..VAR ANS [RESPONSE 'Select

One']

&END

&IF %-ANS% = IT' &THEN R CTEL

&IF 0%ANS% = ' &THEN ScRETURN

&RETURN

b. DT5.CPL

/*DISPL.AY TOP display top menu

R NL2 27

TYPE ' T - TEL-A-GRAF GRAPHICS

TYPE I Q - QUIT

R NL2 10

&RE TURN

jig5

c. NL.2.CPL

&ARGS JUMP

&DO M := 0 &TO %JUMP% &BY 1

TYPE

&END

&RETURN

d. CTEL.CPL

/*(cTEL.cPL) CALL TEL-A-GRAF

&DO &UNTIL %FINISH%- = TRUE

&SETVAR ANSWER :=(QUERY 'Enter TEL-A-GRAE at COMMOAND LEVEL']

&IF %-ANSWER% = FALSE &THEN

R MANTEL

&ELS E

R FREE a

&SET_.VAR FINISH [QUERY 'Finished']

&END

&RETURN 1

e. MANTEL.CPL

/*(MANTEL.CPL) MANIPULATE TEL-A-GRAF

/*Select data, type of graph and open TEL-A-GRAF

&SET_3AR COSTCEN [RESUME 5CC]

&SETVAR PLOTCODE (RESUME SPLT]

&SET2VAR PLOTOPT [RESUME SPLO]

R OPTEL %COSTCEN% %-PLOTCODE% %-PLOTOPT%-

&RETURN

f . SCC.CPL

/*(SCC.CPL) SELECT COST CENTER

/*Select the desired cost center code for use with TEL-A-GRAF

R DCC

&SE'T-VAR ANS rRESUIIE VCC]

160

&RESULT %ANS%

&RETURN

g. DCC.CPL
/*(DCC.CPL) DISPLAY COST CENTER

/*Display the cost centers that can be graphed with TEL-A-GRAF

R NL2 13

TYPE ' 'CHOOSE COST CENTER

R NL2 3

TYPE ' '1 110

R NL2 10

&RETURN

h. VCC.CPL

/*(VCC.CPL) VALIDATE COST CENTER CODE

/* Request, get and validate the user response to the Cost Center

menu

&SETVAR ANS [RESPONSE 'Select One']

&SETVAR FLAG FALSE /*INITIALIZE FLAG TO FALSE

&DO &UNTIL %FLAG% = TRUE

&DO CHECK &LIST 1

&IF %*ANS% = %CHECK% &THEN &SETVAR FLAG := TRUE

&END

&IF %FLAG% = FALSE &THEN &SETVAR ANS (RESPONSE 'SelectOnel

&END

&RESULT %ANS%

&RETURN

i. SPLT.CPL

/*(SPLT.CPL) SELECT PLOT

/*The user is given the ability to select the type of graph TEL-A-GRAF

/*will produce.

R DPLT

161

.

• 1

!, ,,, , ., , ,, , ¢ .. t .-.V . . -.- , ,.C... - .- -" .-* .' ..*.. .,. . . - - .' .-.-'-

&SETVAR ANS -= (RESUME VPLT]

&RESULT %ANS%

&RETURN

j. DPLT.CPL

/*(DPLT.CPL) DISPLAY PLOT

/*Display the choices for the type of plot available to the user RNL2

10

TYPE ' 'GRAPH PLOT CODE SELECTIONS:

R NL2 4

TYPE ' 'A - PLOT OF EXPENSE TO BUDGET WITH

TYPE ' ' BARCHART OF BUDGET OVERLAYED ON

THE

R NL2 1

TYPE 1 'B - BARCHART BY COST FUNCTION/COST CLASS OF

TYPE ' ' EXPENSE TO BUDGET

R NL2 1

TYPE ' 'C - COMPOSITE VARIANCE BARCHARTS

R NL2 10

&RETURN

k. VPLT.CPL

/*(VPLT.CPL) VALIDATE PLOT CODE

/*Request, get and validate the user response to the Plot Codemenu

&SETVAR ANS := [RESPONSE 'Select One']

&SETVAR FLAG = FALSE /*INITIALIZE FLAG TO FALSE

&DO &UNTIL %FLAG% = TRUE

&DO CHECK &LIST A B C

&IF %ANS% = %CHECK% &THEN &SETVAR FLAG := TRUE

&END

&IF %FLAG% - FALSE &THEN &SETVAR ANS := -RESPONSE 'Select One']

&END

&RESULT %ANS%

162

&RETURN

1. SPLO.CPL

/*(SPLO.CPL) SELECT PLOT OPTIONS

/*Select the option to plot the total cost center or a cost function

/* within it

R DPLO

&SETVAR ANS [RESUME VPLO]

&RESULT %ANS%

&RETURN

m. DPLO. CPL

/*(DPLO.CPL) DISPLAY PLOT OPTIONS

/*Display the menu cost functions that can be plotted under the

/* cost center and for the plot type selected

R NL2 10

TYPE 'PLOT OPTIONS:

R NL2 2

TYPE 'A - TOTAL

TYPE 2 - 112

TYPE '3 - 113

TYPE '4 - 114

TYPE 5 - 115

TYPE '6 - 116

TYPE '7 - 117

TYPE '8 - 118
S

TYPE '9 - 119

R NL2 10

&RETURN

163

"I

S

n. VPLO.CPL

/*(VPLO.CPL) VALIDATE PLOT OPTIONS CODE

/*Request, get and validate the user response to the Plot Options menu

&SET_VAR ANS [RESPONSE 'Select One']

&SETVAR FLAG FALSE /*INITIALIZE FLAG TO FALSE

&DO &UNTIL %FLAG% = TRUE

&DO CHECK &LIST A 2 3 4 5 6 7 8 9

&IF 5ANS% = %CHECK% &THEN &SET_VAR FLAG := TRUE

&END

&IF %FLAG% = FALSE &THEN &SET_VAR ANS := [RESPONSE 'Select One']

&END

&RESULT %ANS%

&RETURN

o. OPTEL.CPL
/*(OPTEL.CPL) OPEN TEL-A-GRAF

/*Open TEL-A-GRAF and input the user's graph selection. If Free

/*Form is selected the user will input the graph selections. &ARGS

COSTCEN; PLOTCODE; PLOTOPT

&SET_VAR SECONDATA := "

&SETVAR THIRDINCLUDE

&SETVAR FOURTHINCLUDE :

&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1AA &THEN

&DO

&SETVAR DATAFILE ="BEll0"

&SETVAR SECONDATA 1"Bl10"

&SET.VAR INCLUDEFILE := "EX2"

&SET._VAR SECONDINCLUDE := "Bl"

&END

&IF COSTCEN%%PLOTCODE%%PLOTOPT% = IA2 &THEN

&DO

&SETVAR DATAFILE "BE112"I

&SET_VAR SECONDATA 1"Bl10"

&SET_VAR :NCLUDEFILE 1"EX2"

164

&SET-YAR SECOI4DINCLUDE "EX11211

&SET-Y.AR THIRDINCLUDE 1"B11

&SET-VAR FOURTHINCLUDE

&END

&IF %COSTCEN%%*PLOTCODE%%oPLOTOPT% = 1A3 &THEN

&DO

&SE..VAR DATAFILE '3BE11311

&SE..VAR SECONDATA . "B11"

&SE%3AR INCLUDEFILE :="EX2"1

&SET..VAR SECONDINCLUDE "EX113"1

&SET-.VAR THIRDINCLUDE "Bil"

&SET-YAR FOURTHINCLUDE -

&END

&IF %COSTCEN%%OPLOTCODE%%ooPLOTOPT%- 1A4 &THEN

&DO

&SET-VAR DATAFILE :="BE11411

&SETVAR, SECON'DATA "3110",

&SET-VAR INCLUDEFILE -=1EX2"1

&SET_.VAR SECONDINCLUDE "-EX114--

&SET-YAR THIRDINCLUDE "EB11

&SET-VAR FOURTHINCLUDE 1

&END

&IF %-COSTCEN%%,0,PLOTCODE%%*-PL0TOPT.% = IAS &THEN

&DO

&SET-YAR DATAFILE :="BEllS"1

&SETVYAR SECONDATA "B11l11

&SET-YAR INCLUDEFILE := "EX21"

&SET-VAR SECONDINCLUDE "EX115S"

&SET-YAR THIRDINCLUDE "Bill

&SET..YAR FOURTHINCLJDE

&END

&IF %COSTCENI%PLOTCODE%%,0PLOTOPT% 21A6 &THEN

4 &DO

&SET-Y.AR DATAFILE ="BE116"

&SETVYAR SECONDATA "= 1-

165

&SET_.VAR INCLUDEFILE :="EX211

&SET..VAR SECONDINCLUDE :="EXll61"

&SETVAR THIRDINCLUDE "9111

&SET_.VAR FOURTHINCLUDE

&END

&IF %COSTCEN%%PLOTCODE%%PLOTOPT% IA7 WTHEN

&DO

&SET...AR DATAFILE "BEll711

&SET-.VAR SECONDATA "Bi10"

L&SETVAR INCLUDEFILE :="EX2"1

L&SET-.VAR SECONDINCLUDE :="EX1l7"1

&SETVAR THIRDINCLUDE "Bl''

&SET-VAR FOURTHINCLUDE

&END

&IF %COSTCEN%%PLoTCODE%%PLOTOPT% = A8 &WHEN

WDO

&SETVAR DATAFILE "BEll8"1

&SET-VAR SECONDATA "Bib"1

&SETVAR INCLUDEFILE := "EX21"

&SEL-VAR SECONDINCLUDE 2"EXll811

&SET..VAR THIRDINCLUDE "BY

&SET..YAR FOURTHINCLJDE :

&END

&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = A9 WTHEN

&DO

&SET-VAR DATAFILE "BE1l91"

&SET-VAR SECOI4DATA 2"Elill"

&SET-VAR INCLUDEFILE :="EX21"

&SETVAR SECONDINCLUDE "S'All9"

&SET-VAR THIRDINCLUDE "BY"

&SETVAR FOURTHINCLUDE 11

&END

&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = iBA WTHEN

&DO

&SET..YAR DATAFILE "BBElbO"1

166

&SETVAR INCLUDEFILE :="B411

&SETVAR SECONDINCLUDE

&END

&IF %COSTCEN%%PFLOTCODE%%lPLOTOPT% =1B2 &THEN

&DO

&SET-VAR DATAFILE :="BBE1121"

&SET..'AR INCLUDEFILE : B1

&SET-VAR SECONDINCLUDE :="B112"

&END

&IF %COSTCEN%-%PLOTCODE%%PoLOTOPT% 13l3 &THEN

&DO

&SET_.VAR DATAFILE :="BBE1131"

&SET VAR IN'CLUDEFILE : B1

&SET-VAR SECONDINCLUDE -="B1131'

&END

&IF %COSTCEI%%o-PLOTCODE%%*-PLOTOPT% = B4 &THEN

&DO

&SET-VAR DATAFILE :="BBE11411

&SET-.VAR INCLLJDEFILE := "411

&SETYAR SECONDINCLUDE :="B114"

&END

&cIF %COSTCEN%%O-PLOTCODE%%-PLOTOPT% 13l5 &THEN

&DO

&SET-VAR DATAFILE :="BBE1151"

&SET-VAR INCLUDEFILE :="B4"1

&SET-VAR SECONDINCLUDE '=3B15"1

&END

&IF %COSTCEN%%POLOTCODE%%ooPLOTOPT% = 1B6 &THEN

&DO

&SETVAR DATAEILE -"BBE116"1

&SET-VAR INCLUDEFILE "3 I4"

&SET-VAR SECONDINCLUDE :="B116"

&END

&IF 0-CO ST CENI-%PLOTCODE05%-PLOT 0PTI-, =B7 &THEN

&DO

&SETVYAR DATAFILE :="BBE117"1

&SET-VAR INCLUDEFILE "B4"1

&SET-VAR SECONDIN'CLUDE "B11711

&END

&IF %COSTCEN%%*-PLOTCODE%%O-PLOTOPT% = 1B8 &THEN

&DO

&SET..VAR DATAFILE :="BBE118",

&SET- VAR INCLUDEFILE :="B4"1

&SET_ VAR SECONDINCLUDE :="B118"

&END

&IF %cOsTCEN%%*-PLOTCODE%%O-PLOTOPT% = 1B9 &THEN

&DO

&SETVAR DATAFILE :="BBE11911

&SET..VAR INCLUDEFILE :="34"1

&SETVAR SECONDINCLUDE '8 "119"

&IF %COSTCEN%%O-PLOTCODE%%O-PLOTOPT% = CA &THEN

&DO

&cSET..VAR DATAFILE :="P8110"

&SET3AR INCLUDEFILE :="PERBAR"

&SET-VAR MESSAGE :="9110"

&SET-VAR SECONDATA = 'NB11O"1

&SET-7AR SECONDINCLUDE :="NORBAR"

&SET-VAR THIRDATA :="VB110"

&SET-VAR THIRDINCLUDE :="VARBAR"

&SET-7AR FOURTHDATA :="PV110"

&SET..VAR FOURTHINCLUDE :="PERVAR"

&END

&ItF %COSTCEN%%O-PLOTCCDE%%o-PLOTOPT~s = 1CZ &THEN

&DO

&SET_3AR DATAFILE :="P8112"

&SET-VAR INCLUDEFILE :="PERBAR"

&SET-VAR SECONDATA :=INBI1211

&SET 7AR SECONDITICLUDE := N1ORBAR"

&SET.JAR THIRDATA "VB1121"

16(,s

&SET-.VAR THIRDINCLUDE := "VAREAR"

&SETVYAR FOURTHDATA :="PV112"

&SET-VAR FOURTHINCLUDE := "PERVAR"

&SETVYAR MESSAGE := "9112"1

&END '

&IF %COSTCEN04PLOTCODE%%PLOTOPTj = 1C3 &THEN

&DO

&SET_..VAR DATAFILE := "PB113"

&SETYAR INCLUDEFILE := "PERBAR"

&SET..VAR SECONDATA :"N1B113"1

&SET-YAR SECONDINCLUDE :="NORBAR"

&SETVAR THIRDATA := "VB113"

&SETjAR THIRDINCLUDE := "VARBAR"

&SETVAR FOURTHDATA :="PV113"

&SET-VAR FOURTHINCLUDE :="PERVAR"

&SET-.VAR MESSAGE := "19113"1

&END

&IF %COSTCEN%%*-PLOTCODE%%o-PLOTOPT%- = J.C4 &THEN

&DO

&SET-VAR DATAFILE -= "P5114"

&SET-VAR INCLUDEFILE := "PERBAR"

&SETVAR SECONDATA := IIN114" /

&SET-VAR SECONDINCLUDE := "NORBAR"

&SET-VAR THIRDATA :="VB114"

&SET-VAR THIRDINCLTDE '= VARBAR"

&SET-VAR FOURTHDATA :="PV114"

&SETVAR FOURTHINCLUDE :="PERVAR"

&SET-VAR MESSAGE := "9114"

&END

41F %COSTCEN%%-PLOTCODE'-,%PLOTOPT%- !CS &THEN

&SETY.AR DATAFILE -a "PB115"q

&SETVAR INCLUDEFILE -"PERBAR"

&SET-VAR SECONDATA :M "NB115"

&SET..VAR SECCNDINCLJDE 'NORBAR"

169

&SETVYAR THIRDATA :="VB115"

&SET-YAR THIRDINCLUDE -"VARBAR"

&SET-Y.AR FOURTHDATA -"PV115"1

&SET...AR FOURTHINCLUDE :="PERVAR"

&SET-VAR MESSAGE "=19115"1

&END

&IF %COSTCEN%%PLOTCODE%%PLOTOPT% = 1C6 &THEN

&DO

&SET-VAR DATAFILE :="P5116"

&SETVAR INCLUDEFILE :="PERBAR"

&SETAR SECONDATA :=INB116"

&SETyAR SECONDINCLUDE := "NORBAR"

&SET-VAR THIRDATA %="VB116"

&SETjAR THIRDINCLJDE : "VERBAR"

&SETVAR FOURTHDATA :="PV116"

&SETyAR FOURTHINCLUDE := "PERVAR"

&SET-VAR MESSAGE :="9116"1

&END

&IF %COSTCEN%%PLOTCODE%-%PLOTOPT% = 1C7 &THEN

&cDO

&SET..AR DATAFILE :="PB117"

&SET-VAR INCLUDEFILE -"PERBAR"

&SEVAR SECONDATA . N11,

&SETVYAR SECONDINCLUDE :="NORBAR"

&SETyAR THIRDATA :="VB117"

&SE'I VAR THIRDINCLUDE : 'VERBAR"

&SETVAR FOURTHDATA :=IPV11710

&SET3AR FOURTHINCLUDE :="PERVAR"

&SET-VAR MESSAGE :="9117"

&END

&IF %COSTCENs%PLOTCODE%osPLOTOPT% = 1CS &THEN

&DO

&SETjAR DATAFILE -"PB118"

&SETVAR INCLUDEFILF 'PPBAR"

&SETVAR SECONDA77A

up~ upm- WNW a

&SET-VAR SECONDINCLUDE :="NORBAR"'

SET-VAR THIRDATA : "VB118"

&SET_VAR THIRDINCLUDE :="VERBAR"'

&SETJVAR FOURTHDATA t="PV118"'

&SETVAR FOURTHINCLUDE :="PERVAR"'

&SETVAR MESSAGE :="9118"'

&END

OIF %COSTCEN %%PLOTCODE%%PLOTOPT% = 1C9 &THEN

00O

&SET..yAR DATAFILE :="PB119"1

&SET-VAR INCLUDEFILE :="PERBAR"'

&SET-VAR SECONDATA :="NB11911

&SETVAR SECONDINCLUDE :="NORBAR"'I&SETVAR THIRDATA :="VB119"'
&SET-VAR THIRDINCLUDE :="VERBAR"'

&SETVAR FOURTHDATA :="PV119"'

&SET-VAR FOURTHINCLUDE t="PERV&R"'

OIF %SECONDINCLUDE% = 11 &THEN R SINGLE %DATAFILE% %INCLUDEFILE%

&ELSE&OF %SECONDATA% = '' &THEN

RDOUBAR %DATAFILE% %INCLUDEFILE% %SECONDINCLUDE%

R &ULSE R A %DATAFILE% %SECONDATA% %INLDHSCN IRDATAE%

&ELEOO RTHDATAM HE

'%INCLUDEFILE% %SECONDINCLUDE't %THIRDINCLUDE%

%FOURTHINCLtJDE% %MIESSAGE%

&RET URN

p. FREE.CPL

/*(FREE.CPL) FREE FORM INPUT TO TEL-A-GRAF

/*Allow the experienced user to manipulate TEL-A-GRAF using it's

commands

5.8 TAG

&TTY

&END

&RETURN

q. SINGLE.CPL
/*(SINGLE.CPL) SINGLE NCLUDE FILE

/*Allows user to input a datafile and include file to TEL-A-GRAF,

having
/*lItle or no knowledge of TEL-A-GRAF commands.

&ARGS DATAFILE; INCLUDEFILE

5.8 TAG

DATA FILE IS ' DATAFILE%.

:INCLUDE %INCLUDEFILE%.

SUBPLOT 1.

DRAW 1.

&END

RETURN

r. DOUBLE.CPL

i*(DOUBLE.CPL) DOUBLE DATA AND INCLUDE FILES /*Allows the user to

input two include files to TEL-A-GRAF with little or no
/*knowledge or experience with TEL-A-GRAF commands.

xARGS DATAF'LE. SECONDATA: INCLUDEFILE; SECONDINCLUDE

5.3 TAG

DATA FILE IS %-,DATAFILE%.

INCLUDE %INCLUDEFILE%.

SUBPLOT 1.

DATAFTLE :S %SECDATA,%.

::ICL:L'E %SECNr1DIN1CLUDE%.

I"2

.zrwnn:v rjr.-.M - - --- - - -

SUBPLOT 2.

DRAW 1 2.

&TTY

&END

&RETURN

s. DOUBAR.CPL

/*(DOUBAR.CPL) DOUBLE INCLUDE FILES

/*Allows the user to input two include files to TEL-A-GRAF with

little or no

/*knowledge or experience with TEL-A-GRAF commands.

&ARGS DATAFILE; INCLUDEFILE; SECONDINCLUDE 5.8 TAG

DATA FILE IS %DATAFILE%.

INCLUDE %INCLUDEFILE%.

INCLUDE %SECONDINCLUDE%.

SUBPLOT 1.

DRAW 1.

&TTY

&END

&RETURN

t. TRIPLE.CPL

/*(TRIPLE.CPL) DOUBLE DATA AND TRIPLE INCLUDE FILES /*Allows the

user to input three include files to TEL-A-GRAF with little or no

/*knowledge or experience with TEL-A-GRAF commands.

&ARGS DATAFILE; SECONDATA; INCLUDEFILE; SECONDINCLUDE; THIRDINCLUDE

5.8 TAG

DATA FILE IS %DATAFILE%.

:UCLUDE %INCLUDEFILE%.

SUBPLOT 1.

DATAFILE IS %SECONDATA%.

INCLUDE %SECONDINCLUDE%.

::CLUCE %THIRDINCLUDE%.

SUBPLOT 2.

I"3

DRAW 1 2.

&TTY

&END

&RETURN

u. QUAD.CPL

/*(QUAD.CPL) QUAD DATA AND INCLUDE FILES

/*Allows the user to input four include files to TEL-A-GRAF with

little or no

/*knowledge or experience with TEL-A-GRAF commands.

&ARGS DATAFILE; SECONDATA; THIRDATA; FOURTHDATA; INCLUDEFILE,

SECONDINCLUDE; THIRDINCLUDE; FOURTHINCLUDE; MESSAGE

5.8 TAG

DATA FILE IS %DATAFILE%.

INCLUDE %INCLUDEFILE%.

C.

TITLE TEXT IS "PERCENT EXPENDED '%,MESSAGE%.

SUBPLOT 1.

DATA FILE IS %SECONDATA%.

INCLUDE %SECONDINCLUDE%.

DATA FILE IS %THIRDATA%.

INCLUDE %THIRDINCLUDE%.

DATA FILE IS %FOURTHDATA%.

INCLUDE %FOURTHINCLUDE%.

DRAW 1 2 3 4.

&TTY

&END

&RETURN

2. TELL-A-GR,%F PROGRAMS

a. TAGPRO.DAT: Tell-A-Graf Profile File

PRIMARY DEVICE IS TEKTRONIX.

PRIMARY DEVICE MODEL IS 4105.

PRIMARY DEVICE DRAW:NG RER :5

SEC'tIDARY DE';:C- :S ;cP.

I -4

..........."" "." " "",- .: , ,m,. ~tx ,t. w t,;,,z,-- " , , ;...k ,,a ...*,,1 It 2. k haL, ,,

PAGE LAYOUT 1S HORIZONTAL-REPORT.

ERROR REPORTING LEVEL I5 3.

EXIT.

b. Bi: Bar Chart For Budget

GENERATE A VERTICAL BAR CHART

INDEPENDENT DIVISION-LABELS IS 1112' '113' '114'

'115' '116' '117' '118' '119'

INDEPENDENT LABEL TEXT IS "COST FUNCTION"

DEPENDENT LABEL TEXT IS "MILLIONS OF DOLLARS"

AXIS FRAME IS 1.

WINDOW DESTINATION IS -1 6 4.099999 10.

WINDOW DESTINATION FRAME IS 0.

TITLE TEXT IS 'FY 36 BUDGET FOR" "COST CENTER 9110"

FILE

C. EX2: Plot of Budget vs Expense

GENE7ATE A ?LOT

X AXIS DIVISION-LABELS :S !'OCT" INOV' "DEC" "JAN"

"FEB" "MAR" ''APR'' "MAY" 1JUN"I "JUL" ''AUG'' "SEP".

X AXIS GRID IS 0.

X AXIS LENGTH IS 8.5.

X AXIS LABEL TE' IS "END OF MONTH" . X AXIS SHIFT IS 1.

' AXIS 3RID :s).

7 AXIS MODE IS REVERSED.

7 AXIS OFFSET IS 3.

AXIS FRAME IS).

WINDOW DESTINATION IS -1 10 -2 10.

LEGEND FRAME IS 1.

LEGEND X ORIGIN IS 1 .

LEGEND 7 ORIGIN :s 2.

LEGEND UNITS :S COORDINATE.

MESSAGE I.

MESSAGE CONNECT POINT IS 0.5 -0.5. MESSAGE TEXT IS

"BUDGET "75 E:'PE:ISES' ' CST -: --. -"

'FOR ALL OZST -u::C::

~~0

[~

.. ' " " .. " ." . " ' ./., ' -' ., '; d .. ' ., ",- '" °- ' - ".. "- " , " "" " " " ' ' " ,: " "- ' '

MESSAGE UNITS IS INCHES.

MESSAGE X IS 9.

MESSAGE Y IS 6.

MESSAGE 2.

MESSAGE CONNECT POINT IS 0.5 -0.5.

MESSAGE TEXT IS "MILLIONS".

MESSAGE UNITS IS COORDINATE.

MESSAGE X IS 10.5.

MESSAGE Y IS 4.

FILE

d. EX112: File Appended to EX2 For 9112

MESSAGE 1 "BUDGET VS EXPENSES" "FOR COST FUNCTION 9112"'.

MESSAGE 2 TEXT IS "THOWSANDS".

FILE

e. EX113: File Appended to EX2 for 9113

MESSAGE . "BUDGET V5 EXPENSES" "FOR COST FUNCTION 9113".

MESSAGE 2 IS "THOUSANDS".

FILE

f. EX114: File Appended to EX2 for 9114

MESSAGE 1 "BUDGET VS EXPENSES" "FOR COST FUNCTION 9114".

MESSAGE Z :S 'THOUSANDS".

"FILE '*

EXI15: File Appended to EX2 for 9115

MESSAGE 1 "BUDGET VS EXPENSES" "FOR COST FUNCTION 9115".

MESSAGE 2 IS "THOUSANDS".

FILE

A. ZX1I6: File Appended to EX2 for 9116

MESSAGE 1 "BUDGET VS EXPENSES ' "FOR COST FUNCTION 9116".

MESZAGE 2 15 "THOUSANDS".

*'F:LE**

I-I

i. EX117: File Appended to EX2 for 9117

MESSAGE 1 "BUDGET VS EXPENSES" "FOR COST FUNCTION 9117".

MESSAGE 2 IS "THOUSANDS".

FILE

j. EX118: File Appended to EX2 for 9118

MESSAGE 1 "BUDGET VS EXPENSES" "FOR COST FUNCTION 9118".

MESSAGE 2 IS "THOUSANDS".

FILE

k. EX119: File Appended to Ex2 for 9119

MESSAGE 1 "BUDGET VS EXPENSES" "FOR COST FUNCTION 9119".

MESSAGE 2 IS "THOUSANDS".

FILE

I. B4: Triple Bar Chart, Budget, Budget %, Expense

GENERATE A VERTICAL BAR CHART

INDEPENDENT DIVISION-LABELS IS '112' '113' '114'
11151 '1161 11171 1118, 11191 .

INDEPENDENT LABEL TEXT IS "COST FUNCTION"

DEPENDENT GRID IS 1.

DEPENDENT LABEL TEXT IS "MILLIONS OF DOLLARS"

AXIS FRAME IS 0.

TITLE TEXT IS "FY 86 BUDGET VS EXPENSES"
"COST CENTER 110".

LEGEND FRAME IS 1.

FILE

m. B112: Appends B4 for 9112

DIVISION LABELS '02' '03' '04' '11' '12' '19'

'30' '33' '39' '68' '91' '93' '96' '97' 198'.

X AXIS LABEL IS "COST CLASS".

TITLE IS "FY 86 BUDGET VS EXPENSES" "COST FUNCTION 9112".

DEPENDENT LABEL TEXT IS "THOUSANDS OF DOLLARS".

FILE

177

n. B113: Appends B4 for 9113

DIVISION LABELS '04' '39' '91' '92' '93' '96' '99'.

X AXIS LABEL IS "COST CLASS".

TITLE IS "FY 86 BUDGET VS EXPENSES"

"COST FUNCTION 9113".

DEPENDENT LABEL TEXT IS "THOUSANDS OF DOLLARS".

FILE

o. B114: Appends B4 for 9114

DIVISION LABELS '04' '94' '95'.

X AXIS LABEL IS "COST CLASS".

TITLE IS "FY 86 BUDGET VS EXPENSES"

"COST FUNCTION 9114".

DEPENDENT LABEL TEXT IS "THOUSANDS OF DOLLARS".

FILE

p. B115: Appends B4 for 9115

DIVISION LABELS '02' '91' '93'.

X AXIS LABEL IS "COST CLASS".

TITLE IS "FY 86 BUDGET VS EXPENSES"

"COST FUNCTION 9115".

DEPENDENT LABEL TEXT IS "THOUSANDS OF DOLLARS".

FILE

q. B116: Appends B4 for 9116

DIVISION LABELS '03' '04' '91' '93'.

X AXIS LABEL IS "COST CLASS".

TITLE IS "FY 86 BUDGET VS EXPENSES"

"COST FUNCTION 9116".

DEPENDENT LABEL TEXT IS "THOUSANDS OF DOLLARS".

FILE

r. B117: Appends B4 for 9117

DIVISION LABELS '03' '12' '33' '68' '91' '93' '96' '97'.

X AXIS LABEL IS "COST CLASS".

7:7:E IS "FY 86 BUDGET VS EXPENSES"

"COST FUNCTION 9117".

DEPENDENT LABEL TEXT IS "THOUSANDS OF DOLLARS".

FILE

5. B1i8: Appends B4 for 9118

DIVISION LABELS '91' '93'

X AXIS LABEL IS "COST CLASS".

TITLE IS "FY 86 BUDGET VS EXPENSES"

"COST FUNCTION 9118".

DEPENDENT LABEL TEXT IS "THOUSANDS OF DOLLARS".

FILE

t. B119: Appends B4 for 9119

DIVISION LABELS '04'.

X AXIS LABEL IS "COST CLASS".

TITLE IS "FY 86 BUDGET VS EXPENSES"

"COST FUNCTION 9119".

DEPENDENT LABEL TEXT IS "THOUSANDS OF DOLLARS".

FILE

U. PERBAR: Bar Chart Percent Expended

GENERATE A VERTICAL BAR CHART.

INDEPENDENT DIVISION-LABELS IS 'ELPSED' 'STD TIME'

'OVER TIME' 'MATERIAL' 'OTHER' 'TOTAL'.

DEPENDENT SCALE MAXIMUM IS 100.

DEPENDENT SCALE MIINIMUM IS 0.

DEPENDENT SCALE STEP-SIZE IS 20.

DEPENDENT LABEL TEXT 1S "PERCENT".
TITLE TEXT IS "PERCENT EXPENDED".

BAR ROOT IS 0.

AXIS FRAME IS 1.

: AXIS ORIGIN 1.5, LENGTH 9.

Y AXIS LENGTH 1.25, ORIGIN 6.25.

SUBPLOT 1.

1-9

v. NORBAR: Bar Chart Normalized for Elapsed Time

GENERATE A VERTICAL BAR CHART.

INDEPENDENT DIVISION-LABELS IS 'ELAPSED' 'STD TIME'

'OVER TIME' 'MATERIAL' 'OTHER' 'TOTAL'.

TITLE TEXT IS "DATA NORMALIZED ON PERCENT ELAPSED TIME".

BAR ROOT IS 1.

X AXIS ORIGIN 1.5, LENGTH 9.

Y AXIS LENGTH = 1.25, ORIGIN = 4.25.

Y GRID ON.

AXIS FRAME IS 1.

SUBPLOT 2.

FILE

w. VARBAR: Bar Chart Variance in Dollars

GENERATE A VERTICAL BAR CHART.

INDEPENDENT DIVISION-LABELS IS 'ELAPSED' 'STD TIME'

'OVER TIME' 'MATERIAL' 'OTHER' 'TOTAL'.

INDEPENDENT GRID IS 1.

DEPENDENT LABEL TEXT IS "DOLLARS".

TITLE TEXT IS "VARIANCE IN DOLLARS".

BAR ROOT IS 0.

X AXIS ORIGIN 1.5, LENGTH 9.

Y AXIS LENGTH = 1.25, ORIGIN = 2.25.

AXIS FRAME IS 1.

SUBPLOT 3.

FILE

x. PERVAR: Bar Chart Percent Variance

GENERATE A VERTICAL BAR CHART.

INDEPENDENT DIVISION-LABELS IS 'ELAPSED' 'STD TIME'

'OVER TIME' 'MATERIAL' 'OTHER' 'TOTAL'.

INDEPENDENT GRID IS 1.

INDEPENDENT LABEL TEXT IS "PERCENT".

TITLE TEXT IS "PERCENT VARIANCE".

X AXIS ORIGIN ..5, 'ENGTH 1.

Y AXIS LENGTH 1.25, ORGIN = .25.

I SO

BAR ROOT IS 0.

AXIS FRAME IS 1.

SUBPLOT 4.

FILE

y. B110: Data File for B1

INPUT DATA.

"BUD86"

1 0.77287 2 2.13234 3 4.33018 4 0.05306 5 0.27409 6 1.48263

7 0.0898 8 0.507

END OF DATA.

FILE

z. BEll0: Data File for EX2

INPUT DATA.

"BUDGET".

0 0 1 0.8035 12 9.64198

"EXPENSES"

0 0 1 0.92 2 1.59901 3 2.4567 4 3.3456 5 4.0002 6 4.78999 7

5.477 8 6.008 9.2 6.91127

END OF DATA.

FILE

aa. BBE110: Data File for B4

INPUT DATA.

"BUDGET"

1 0.77287 2 2.13234 3 4.33018 4 0.053063 5 0.274093 6 1.48263

7 0.0898 8 0.507

"BUDGET%"

1 0.60284 2 1.66322 3 3.37754 4 0.04139 5 .21379 6 1.15645 7

.07005 8 0.39546

"EXPENSES"

1 0.69411 2 1.3034 3 3.31009 4 0.04487 5 0.21733 6 1.10264 7

0.0665 8 0.17234

END OF DATA.
FILE

181

* .) :

ab. PB110: Data File for Perbar

INPUT DATA.

"PERCENT"

1,20

2,20

3,45

4,18

5,17

6,19

END OF DATA.

FILE

ac. NBl10- Data File for Norbar

INPUT DATA.

"NORMAL"

1,1

2, .95

3,2.2

4,0.7

5,0.55

6,0.75

END OF DATA.
FILE

ad. VBl10: Data File for Varbar

INPUT DATA.

"VARIANCE"

1,0

2,-3000 -

3,1000

4,-10000

5,-70500
6,-79980

END OF DATA.

FILE

IS2

ae. PV110: Data File for Pervar

INPUT DATA.

"PERCENT VARIANCE"

1,0

2,-S

3,110

4,-35

5,-41

6,-30

END OF DATA.

FILE

ap

aS

wwvqvrwv-~rj~www- w-uv wWW~mvlvwv~w vwrw

APPENDIX E
C PROGRAMS FOR THE MICROCOMPUTER

I. CCA.C
gincluds "colors .h"

*include "etype.h"

#includs "f iledatsch"

include "lintregs~

*include "stdio.h"

/* global Variables 5

#d.! ins SACKGRNO SLUE /* Backgrounmd color 5

#dfins FOREGRNO YELLOW /* Forgro.md color 5

#def ins FORTY 0 /* Cods for forty columnmde5

Sdsf ins EIGHTY 2 /* Code for eighty coluamnios5

extorn getbudf)w

extern gettotf(I

extern gsttotc(3;

extern gsttotfc(3;

extern getesijot)

extern gets.p(3;

extern getfsm(I

extern getmgr(3

extern getanai 3

extern getiosept 3s

extern getjoemmi)l

extern gstfjoI);

extern getcjo()

extern gsthour(3

extern getlabo ;

extern, getmati ;

extern getoth(1

184

I

struct filedsta filstruos

* include "arca imp"

mind I

/0 1 mai begin 5

ch~ar selectC2S61,

u*idr;

char

nes(e 21,

olnolS),

char *b gt(lO01s

int L, J, pg,. pflagp plines, inp(12, lines, nlin..,

IrP2C11,P

irp3C11,

inp'.(I I

irip~tll,

inP6111,

irP7l11

short curs121132i. /* Ids and three cursors '

-- - - - - --/N M M

/s program module Cast Center Analysis W

/5 version 1.0I

authors: Richard N. Noodman 5

/5 Michoel, F Rall5

185

/0, Program last modif led 20 January 1966 0/

/0 m

/w This program was produced on an IBM PC using 0/

/* DOS 3.1. Written with the C progrmming Lnguge, /

/0 utilizing the GraphiC utility softumre. 0/

/* Main modules controls entry to the Cost Center 0/

/0 Informtion modules or to the Command Level Entry 0/

/0 mode. 0/

/* Input/Output Files used: None s/

/* Other Modules Called: COMOLEV, CCI 0/

/w Called by: None 0/

/0 Local Variables: inp s/

setscmod (EIGHTY);

clscolor(FOREGRND ,BACKGRNO)i

border(BACKGRNO)i

inpl[O1 a O's

inp3[O • O'l

inpSt 0 1 a 0';

inp([0] 1 011

clearthescreenf)I

clscolori 14 , v

186

ritebordart 3

do

/*

clearkbis~

curlocat(4,I1s

colrcprt("COST CENTER ANALYSIS ",14,3)1

eurloc~tE6,1);

colrcprt("1. Cost Center Information ",14,3)s

curlocat(8,1 I);

colrcPrt("2. Cost Center Information Using "P14.,3)s

cur locatl 9, 1)s

colreprtl"Orocle Comumand Language (SQL) For Adc~-"p4,3)s

curlocat(10,13;

coircprt("Queries, Inserts, Oeletes and Updates,1l4,3)s

curlocat(14,1)t

colrcprtl 'Selection: "v1*,3)s

ourlocat(16,1)i

colrcprtf"A blank line exits to DOS ',14v3)1

curlocatl 14,45)t

qetinti 1,,,,&ianp,Ov1,3)s

if (inp(Oi !z ' 0')

curlocat(S1,13)

colreprt('Is this correct? ,4,)

curlocatE 15,45;

i *coy*%no(lS,45,l3;

if (inpCOI 0')

while ni != 1)$

I S7

our lcoet l 4,45 Is

if (inpLO] u 0') goto donsi

if (linpLO] s 1)

/0 Logan to ORACLE 0/

if IolonlcursCOl,"osystem/mmneger",-1,-l,'1,ORJ

errrpt(cursL 0],4) |

goto donef

/0 program module Cost Center Informtion 0/

/0 version 1.0 0/

/a authors: Richard N. Wooman/

/0 Michael F Rail 0/

/0 Program last modified 20 January 1986 0/

/0 This program was produced on an IBM PC using 0/

/* DOS 3.1. Written with the C programming language, 0/

/* utilizing the GraphiC utility software. 0/

/0 Main meuj driven shell for Oracle. Allows easy access 0/

/* to sp cified information and display of thet informs- 0/

/0 from Oracle. Also sends specified data to a file for 0/

/* the graphics utilities. 0/

/0 Output files: GRAF, GRAFl, BUD 0/

/* Modules called: BUDEXP, EHPINFO, JOINFO 0/

% % .

/3 Called bY: CCA 3

/* Local Varilablas: Lrnl 3

for (st) p

/* 3 begin main while statement 3

claarthescreen(I

cisoolorE 14,3); 4

ritabordarol3

do

/* 4 3

clearkbdo ;

curLocat(4,I)s

colrcprt("INFORMATION AVAILABLE ',14,3)1

curlocat(6,111

colreprtt"l. Budget VS Expenses ",14,311

curlocatE 10,1)1

colrcprt(*"2. Job Order Information ' ,14,3);

curlocat(14,1); 4

colreprtE"Selection: ",14,3)s

curlocatl 16,1)$

colrcprt("A blank line exits "14,3 1; 4

curl~ca t(14,45)11

if Iineicol '

curlocatE 15,1);

189

colrcprt"Is this correct?

"P14,31t

curLocatE 15,4S It

i ecoyesnll,54S,l)

if (i l[O 1 0'

i =1

while (i !a 1)1

curlocatfl 4 ,4S)

if (inpl[O u= 0') break;

program module Budget Ys Expenses */

/5 version 1.0 5/

/5 authors: Richard N. Noodman 0/

/5 Michael F Rail

/e Progrm last modified 20 January 1986

/* This program was produced an KB PC using
i ~ / DOS 3.1. Written with the C programminlg larnguage, *

/* utilizing the Graphic utility software.

/* Allows display r-d comparison of budget and actual

/ expense informtion by various categories. Interfaces 5/

/5 specified datw with graphics for furthar displays. 5/

a /5 5/

/* Output files: GRAF, GRAF1, BUD 5/

/* Modules called: GETBUD, INDVDISP, TOTBUDEXP 4/

191)

-.6'

NO X ~v~r~vFTK W% v w'. . V-v W-; W-u W-I w%; w- -1 ------------

/* Called by- CC! a

/* Local Variables: inpZ 5

if (inpiCG] 1)

for(s;)

clear thescreeni);

olacclor(14,3)i

ritborderE Ii

do

clearkbd()l

curlocat(4,l 11

colrcprt("BUDGET VS EXPENSES "p14,3)1

curlocat(6 ,l is

colreprt(I"1. Total Budget VS Expenses to Date

",14 311curl
cat(8,l 3;

colrcprt("2. Labor or Material or Other "*,14,3);

curlocat(1O,1)s

colrcprt("3. Budget by Cost Fume/Cost Class",14,3);

curloct(14,1);
colrcprt("Selection: "1,)

curlocaot(16,13;

colrcprt(I"A blanK lin, exits *,14,3)s

curlocat(14,45)1

if (inpZCO] : 0

curlocatl 15,111

COlrcPrt(1sa this correct?

curlocat(I S,45i

9D13 264 OSS (DECISION SUPPORT SYSTEM) DEVELOPMENT EFFORTS AT 3/4
TIE MARE ISLAN NAVAL SHIPYMO(U) NAVAL POSTGRADUATE
SCH0OOL MNTEREY CA N F RALL ET AL NMR 67

UN LASIFIEDD F/O5/ M

Eoomhhmhmmhls
Eomhmhmhmhhhhl

lInl II ll |11111.25 1111L1.2Hl .

liiiL- 11111- 11.6I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

3W .! -JU' ~ ~ * A

%

I coyesno(S145,1),

if (inpZ01== ' 0)

/W END 00 LOOP FOR 2NO MENU IF MENU I • I

wh~ile (i :g' I)s

if IinPZ2O3 an ' 0') breaks

1Wp rogra module Total Budget vs ELqmess/

/5 version 1.0 W

1W authors: Richard N. Hoodnmn Wi

/W Michael F Rail 5

/W Program last modified 20 January 198 /

/1 This program was produaed on an IBM PC using W/

/1 00S 3.1. Nritten with the C programming language, W/

/1 utilizing the GraphiC utility software. W/

/1 Suams labor, aterial and other for budget and expenses 0/

/1 to date by cost furction, cost class, cost funation/ W/

1W cost class and cost center as requested and sands data W

/1 to graphics routine when directed. WI

/1 Outputs OAF, GWAF, 1,3 BU

/I Modles, called: GETTOTF, GETTOTC, GETTOTCFP GETSU WI

/W Called by: UO_EXP

Av Local Variables: ip3 W/

192

If (IrP21O1 no 1)

clearthesc as 4)1

clsoolae(14,3 1;

ritsborderl)

do

clserkbdt)

curlocst(4*21;

oolreprt("TOTAL DUDGUT VS EXPENSES "*14s,31;

curloosti 4,1);

colreprt("1. Cost Function "P14,3);

curlocet(6,l ;

colreprti"t. Cost Cleas 1,14,3)1

oolreprt("3. Cost Function Cost Class "m14,33;

ourlocat(lZ,1);

colreprtf"4. Cost Center ".1443;

our~oct14 v) I

colreprtE "Selectian: ",14,33;

curlocattl6v1)s

colreprt("A blank line exits 11,14.3)1

curloceti 14.45);

gatint(I A I.,1I P2 joirW3,vO pI,4);

if IirP31O1 != 0')

curlocat(I15,1i

oolroprtI"Is this correct? ".14,3)s

curlocatf 1545);

193

if (ine31OJ an 1 0O)

if (inp3Co1 r 0') breaki

claoolor(POREGRN ,BACKGOti)s

ourlocatf 15,45);

oolrprtsE "Total Budet VS Expenses in Thousands of Dollars",p

PORERQ *BSCKM I i

If tirp3[o2 an 1)

hdr a 11 COST FtM BUDGET EXPIEkSE

In Thousands Is$

strapyl select, selbfui J

gettotfi select, hdrp our*);i

if (Imp31OI as 21

hdr u"COSW CLU GUOG EXPENSE

In Thousands .11

stropy(select, selbolli

gettotol select, 3tdr, curas

if (iry3C0i an 33

Ndr COST FU34C COST CLS BUDGET EXPENS

In Thousands ";

stropyl select, selbfol Ii

SmttotfoE select, hdr, cures

if (inp3COI as 4)

194

hdP * "COST CENTER 9110 BUDGET EXPENSE

DATE Zn Thousands "I

strapy(select, selsum)3

getamiselect, hdr, curo)s

program modu&le INOVOZSP 3/

/3 version 1.0

/3 authors: Richard N. Nocdman

/3 NideHel F Rail 3/

/a Program last modified 20 Jawry 19S6 a/

/W 3/

/3 This program was produced an an IBM PC using 3/

/N OS 3.1. Witten with the C programing lanuage, /

/3 utilizing the GraphiC utility software. 5/

/3 3/

/3 Display budget vs emnses to date for either labor, 3/

/* mterial or other, sorted by Cost Function/Cost Class. 3/

/* Znput/output files: NoM 3/

/3 W/

/M Moles Called2 GETLS, GSETHOUR, GEThAT, GETOTH o/

/3 Local Variables: inP4 a/

if 1inZ[O] an 2)

195

ritebordecI 1;

do

olearkbd()1

arloostI4,1 3

oolraprt("1. HOURS "I.1493)s

curlooatfsp11;

oolreprt1"2. LAOM "02493)s

orLocatt 10,131

alreprtl"3. MATERIAL ".1493)s

ouclocatl 1201)1

clreprtl'4. OTHER ".14033;

affloat 1491)1

colroprt(Oft.1at ian: "01433)1

oArlacati U .131

olaprtl "A bim* lin exits ".14,3311

airloostl 14,45)6

If I iro4cal != 1 0')

celreprt I"I. this orrect?"

914,331

ourloost 1.5,4531

I 60ocOyNW(lS,45.13;

if (irnp4tO] 1~ 01

196

whl1 In I.)s

If (£r*4903 Un 0') beeo

mleoet(15.1531 OND~

eirprte(O Budget VS Empmtee in Thousands of Dollars"

FOIESMDAACxgine

if E4 I90 - 13

hdr a NW: COST PUG COST CLS

BUDGET 5)95st

stropv selet * selhesa 3,

gsua(salest * hdrp ours3,

if I IMAM3 ur 3)

hdr . * U30 COST FUN COST CI.S

USET 3)9M In Thousu'idsm1

strapyf select * sellab 31

if M9~4141 an 33

his MTERIALs COST PUIC COST CLS

SIuT VO9MM In Thousenck N1

stropy electp * slec 3

gtmtisslacts hi,. eursel

if I ey4l 0 an 4)

197

h.'* OTHER: COST FUPC COST CLs

BUDSE1 VENE In Thcusumhds

atra"(Select, eelctm),

gstoul(eectip hdrp curesi

if lIrpal0l as 3)

01 lrl FOREUGAND WACK) I

co1r~rtsil"Buds~t W1 Ccst 1Fwnction Cost Class

In Thousemds of Dollars", FOREI ,SAACKUI) I

for (j a as j c 101 344)

stroy6 sloect, solftm 3

hds a 09112 COST CL LABOR MATERIAL

OTHER IN THOUSNS us

strcetl select,"I" 3,

if (j an 3)

h*r a 09113 COST CL LABOR MATERIAL

OTHER IN THOSAD"s

if (3 an 43

hdr a "911* COST CL LABOR MATERIAL

198

OTHER IN THOUSNS";

hdr w N9215 COST CL LA MOR MATERIAL

OTHER IN THOUSND";

stret(seleot 00S")i

If (j ass 6)

hdr a *916 COST CL LABOR MATERIAL

OTHER IN THOSANS";

stramt(s~lect,"Sm)

If (j n 7)

hdr a 0917 COST CL LADOR MATERIAL

OTHER IN THO5AS" I

styoeti sellet,7"" 31S

if 1j U. 5)

hdr * "9118 COST CL LABOR MATERIAL

OTHER IN THOUWAS"s

stroatl seleit ,"S")i

jf (3 ma 9)

hdr a "9119 COST CL LABOR MATERIAL

OTHER IN THOUSANDS";

stroat(select,"9")i

strost select," ")

gotbud selacti hdr, o Ii

199

-. -. - ,o . ** .. %. P

/* END 30 EMIJ 4. IF 4 /

,W END SECOND MENU FOR LOOP Cl

I* END 1. BU ET AND EXPENSE IF LOOP FROM SECOND MENU W,

/5l prog. mode. Job Order Information W

/u version 1.0

/* authors: Richard N. Noodeen WI

Michael F Rail I

1W Program last modified 20 January 1986 W/

/* This program ms prodeced on on IBM PC using WI

/u DOS 3.1. Written with the C programming language, WI

/1 utilizing the GraphiC utility software.

/N Displays the a Job Order, Job Orders WI

/u wndAe a Cost Function, end Job Orders under a Cost WI

/u Class. WI

/u Input/Output Files: None WI

/u Modules Celled: GETJOEMP, GETJOENA, GETFJO, GETCJO WI

/u Called by: CCI WI

/u Local Variables: inp7 a,

------------------------------ /

if finp(O] == 5)

/u main mwn choose 3 W/

for(i)

200

olsoolorE 14,331

ritsborderi 3

inplO1 0*;

do

clark4bdfl

inp71OI 1 a

oolreprt("JOB ORDER INFORMATION " ,14*3 31

ourlocatE 8,131

colroprtt "1. rIput Cost Function

find Job Orders",14,3);

awlost(1O,l)j

oolscprtt "2. Input Cost Close * Find

Job Ordsrs"P14,331

amloost(14.11

oolroprt(SeIeotions N*2443)1

curloostE 11

oolrcprt("A blank~ line exits ,1l4v33j

curloatI 14*4531

if (iny79OJ in 1 01)

curloast(15,1 31

oolroprtI "Is this correct?

"9149,3)s

curlocati 1B,4S3i

I eooyesno(1,45,l))

if~~~ I *70 11)

/* END DO LOOP FOR MENU IF MENU 1 a3 5

wh~ile (i is 21

201

V. *%

if (imp7101 un'0') breeks

olecolorl FOUED ,ICKORN) 31

atirlocetI 15.20)1

eolrprts(* JOB ORDER INF0UIAT!ON ",PORE=NQ ,S*CKOUN)1

if (inP71OIur 1)

for- (it)

/' begin for- statement w

lartescrnt3

ritbn-dro;3

do

ourlocett6,1)1

oolucprtV"INPJT THE COT FUNCTION NUMBER "914,331

curlocet(10,131

colrcprtf "Selection:",,31

eurlooeti 16.131

colraprtl"A blank~ line exits f.14,3)1

curloat(l10,45))

getostri 2Ov1,1,1.2,8cfno,0)i

If (ofno(03 Is 1 0')

ourlocet(12,13s

colroprtf "Is this correct?"

,1493)1

202

ourloost(12945)s

I a *ooyesno(12p45,l)s

If (cfnoCO 0 3 0')

while (I1)

if (ofnoCol usn 1 0') brooks

hdr *'Cost Function Job Order Number

I

strepy(seleotp self iou

strcat(seloots1,")s

strceti select ,ofno I

streti selocts,"'")i

gmtfJo(select* hdr, cur*);

/* end of or if loop a*Ifor new -2 5

/0 end of employee menu for loop 3

if (inp7101 un2)

for (Wi

/* begin f or statement 5

oleerthescreen()

olsoolor(14,3 1;

riteborderolJ

do

cleatkbd(3j

ourloceti 6,l I

clreprt("INPJT THE COST CLASS NSER 11,14,31s

ourlocat(10,1)i

oolrcprtil"Selection: "1,)

203

%% f 'par ~

curlocatE 16,l1i

colreprt("A blank line exits ",l4,3);

curloceti 1O,45)j

getostrE 2O9lVll,2&cno,O);

if lolnoC0l != 0')

curloost(l2*l)i

colroprt("Is this correct?"

curlocat(12945)1

i *ecoyesnol2,45,l)i

if tolnolOl z3 0')

i a1

if 1clinoI01 1u 0') breaks

hdr * " Cost Class Job Order Wwm~r

strepyt select, selojo)

strcati select,'1 ")

strceti select ,clno)s

getfiolselect, hdr, curs)i

/W end of orif loop a Ifor mnu2-2 W

1W end of employee menu for loop W

1W end of for loop W

1W end ofif M2 eployeW

/W END FIRST MEM4 FOR LOOP W

204

N . N '. N A

/N End Main Menu If Inp an 1 /

is program module UFI Si

version 1.0 5/

/5l authors: Richard N. Nood i/

Mic'Iel F Raol li

/ Program last modified 20 January 1966

/* This progra m s produced an an IBM PC using 5/

/* DOS 3.1. Nritten with the C programming language, 5/

/* utilizing the GrapiC utility soft.are. g/

/5 Calls User Friendly Interface to allow the user to W/

/U make Adho quariess updates, and deletes. Si

/W 5

/0 Input/Output Files: None 5,

/* Modules called: User Friendly Interface Wi

/i Called by: CCA 5/

/5 Local Variables: None a,

if (inp(Ol an 2)

clscolor(14,3)

i x dosondl "ufi systm/manager")

/* End Min Henu If Inp -= 2 ,

done:

205

~(% * ~ ** ~ - ~ .% ~ %% ~ ~ '~ %

0Close the budget oursor 0

I' Free tOe budmet array W

forl iuO i < SO 50 i**) freefbudget[11) 1

if (pflag) lprtff()

setacoodtEGM sZNT

border(AKOM -
clsoolor(FOREMMSACKOWi

/* Log off fra ORACLE 0

ologaf(ouraC0J)s

/W min and 0

aurlocatil ,);

oolrprte(title PFOREGM ,SACKURD) I

returnsi

ritaborderE)

irit xs

printfl" n"))

for Ix w 01 x cs l~l x++)

colroprt(l"? ?" ,14,3)s

printf(" n"'I;

14,3)s

206

%I

int yi

for (y 01O y <8 lirei Y**)

printflu n~h

oleestheecreen()

int zi

for (z m 4; z < 171 z+4)

al. (z20,38)s

writef (line)

cuer lineC8lJb

/* Writsf ile writes the output of Oreole to a file celled graf C

FILE moutf ilev *Fopun I

autf ile Fop f-en"grf"a")i

fprintf(outfile,"Xs n"Plins)s

felosel outfil.0))

writefli line)

altar lineE8hI;

/* Writefilel write* the output of Oracle to a file celled graft10

FILE Moutfile, *fapenli1

outfile m fapes("grefl","a");

207

fprintffoutfilop"Zo n .linsh

foloelutf ila)i

sorilaelblins)

char line! 8111

/3 Nvritafb writs.p the output of Oraole to a fil cla lled bud 5

FILE Moutf la, sfopom is

oiatf Ale s Fopsn("budva")s

fprintfloutfil,"Xs n~vlina)s

folceloutfi.e)

2. PROJA.C

Sinoluds "color. .h"

Sinoluds notypa.h"

Sincluda "4 ilodata.h"

*inc lude "intrg .h"

linoluds "stdio.h"

/3 global Variables 5

Odef ins SACKG InBUE /* Sackgromt color 5

*def ins FOREGRM YELLOW /5 Foregrounid color 5

dof ins FORTY 0 /5 Coda for forty colm sodas5

Udaf ins EIGHTY 2 /5 Coda for eighty colun modse5

Sinoluda "orcairip"

208

ji
.

other(1511

dar LIMESCI, ~dmCOJ e~o(

int 1v 3, pg, pflego plinse, limep nlieSS

Sola .01

.etawcmd FRENTY)BCG1D I

oo dw~ (BAC OSS I~KE s

curlocetE 1292331

foq(imOs I < Sol 1#41 budootil a allac-4l,13i

olrprtsl "Do you went printed output(Y)? ORG ,CGW1

if (getysano~ll3

/w Initialize the print variables,0

pf leg a Is

far £3.11 3 <= 6; 3,*) Iprtlftli

for (3.11 Iu 1= Is. 3** rtdaer(0, '15

1prtst~r 3r

lprtaf()3s

Iprtlf()1

also pf leg w 01

clsoolorl FOREGUID ,ACKSWU 31

/0 Process the ORACLE request 0

/s Open a cursor for the budget i

if (oopenlurstI,aura[0 1-1 -l ,-lp-1,9-1))

orrrpt(cursIOI,*3i

gate aloe*$

210

/M Retriev the first record/

INWELECT SIM(UDOR 3.SM(MATERIAL).SUI(OTNER I

FROM SWIET WERE CaST_.FLUNO a N/

if Iceq13cur[lI, seloct, -1) 11

odefintcura(l1, 1, lm~, sLaeof alms,

odefin(u1g1, 2, &labor# .Iizof labor,

odefin(Gur.el1, 3p Amteriel, sizeof materia,

odefinfous.l3,p 4p lother, msizoof other, 5,-,l-l-pl-l-)I

onxeo(curs[1l) 11

ofetchl our*I I

iff our*[IfIt0 3-4)

airlocat(l2,3O)4

colrprtsl "N Records Selected"sFMO!QBACKGU)s

else

erpttcsjr*[OI ,*)j

goto close$

/N Retrieve the remining records 0

lines a 2i

heed(hdr)s

whil. (oursCICOl !a 4)

nl ires a 0

at-opyline,. clnol,

211

zI

/0 Chmak for a full esos w/

als if I1lime + nlil.. % a33

*alrpirts("Prose any key, to ontium~ or 4 to quitp

lines 0 *

if (13 as Iql3 11 (3 an 141) @*oa dmnes

oleoolort FCIUW ,SaCKU I

headf hdr)i

/0 Ocksl for a full peq 3

if (pflI" S& ((plinve # nlil,.) >5113

i a 400 - trlnhdr)3/2U

Urtff 1 3

for I)RI j (3 6;)#*3 lptlfI 3

for fjol 3 to 11 3*.3 lprtd'tarfOp * '3

lprtstrl hdr I i

lprtart)s

lprtlf I)I

lprtlf(3

/3 Print Owi lines 0

for j~i (nlinsel 3,.)

uirlocatl lines,1O 3,

oolrprt.(budgeti 31 FONESUID,SACKSO Ii

if lpflagl

213

3pgwtetr(budgetCJ3

lp.tlf (3

Linn#*$;

if IpflaG)

lprtlfl))

pliks+s*

ofetahi our*[11)31

ale".:

ourlocatt24920)i

oolrpfts(" Press a key to continue

/a Close the budget cursor 0

oeios.ea(113;I /5 Free the budget array 07/

forE im0l I < 501 1+#) froelbudget(i3Di

if lpfleg) lrft3

sateemodl EIGHTY)i

bograr SA=XG)

cleolorE FOGOUS,&=Aw I;

214

J6,-% J

Sprogi module gettotf WI

1W version 1.0

IU1 authors: Richmrd N. oodmn W

1W iHchael F Rail WI

/1W Progrem last modified 11 December 198 Ut

/V Purpose: Displays budget vs eqpense to date for 5/

/u current fiscal year, by ost funotion.

/u Other modules called: SELBFJN,SLEFUNwritef I

/U Celled by: TOCUOW P WI

/* Files used: NONE WI

/u Files created: GRAF

/1 Local variables ofnotbudeup /

/u line-O-, nudgt-lO0-, Wmclloo()s E

/u i, J, P, pflag, pLne, lines, nlinsel W/

gttotfiseleot, hdr, ours)

cher **elect,

Whdr5

shot u[Ita 132 Is

ofoIS 3,

bud[l5 ,

car lirKIOI1, Nbudgmt[lOOI, acllool)s

it it jv pg, pflag, gflag, plunes line, nline.;

nluns. a 0 s

setsemodi EIGHTYIs

alsoolo,'(PaREOUS ACKGQ It

omwocatI 12,231;

foulmfl I < 50; 1+*) budgttiJ w aalloo(l,13;

ooirpi-ta "Go you wen~t printed output (V/N)?", POREWWS,3ACKSU)s

if (gmtyeenoll)

/0 Initialize the print variabl."W

pfleg a 1;

for ()=1s 6s (u +;3,) lprtlf~i;

for (331; 3 <w Is J,+) lprtchmr(0, I*

JLprtstr(her);

lprtorli;

Iptlfl (s

lprtlf 1

else pU I"g a

pline. 0 0)

curlocatl14,23)i

oolrprts("Graph Output (Y/N)?",FOREWW,1AJ(RN);

216

WIMM. wuwwwwME, 0 m %W

/M Initialize the gragh variable .

if Igotyaem~l)) gflag 0 is

else gf lag au0

alsoolor(POUUUI sBACKUU)s

/3 Process the ORACLE request U

/* Opn a cursor for the budget 0

if (ocpen(urecillaurslpl-.-.-,-))

srrrptI cjrsI 0 , 11

got. closes

/N Retrieve the first reor e

/3 SELECT COST..PWLJ4, SM UO)+SWM(MATERIAL)4SUM(OTHER)p

FROM BUDGET GR"U By COSTJII.N 0

if foeql3(aurs[1J, select. -1L) 11

odefinaursill, 1, Scfno, sizeof cfno,

odefin(cwestlIs 2, C.3, sizeof bud,

owxeolcursI1I) 11

ofetdhtcurs(11))

ificurs[11C01-4)

ourlocetl 12,30))

aolrprts("No Records Selected", POREQMI,SACKCU)

goto cloe$

also

*rrrpt(cursIOI,4)1

gato olosel

217

/W Open e cursor. for the expens W/

/N SELECT COSTJWLJIO,3M(LABOR),SIMIMATERIAL).SWIIOTHER)

FROM EXPENSE IHREE OT m (SELECT HMO T) FROM EXPENSE

AND COST-JINJO a :COST.jU5LNO OMW BY COSL.RINO 5

if (open~curs[23cursO,-l,-1-1,-l,.-1)

oeq13(curs[23, selefuns, -1) 11

sdefin(cursCZl, 1, Sofre, siamof ofnop

odefin(cursCZl, 2s SeCpP sieoof mep,

cbndrv(aurs[ZI,":CFNOP-lAcfno,-lpls-1-1-1l,-l))

errrpt(cursCOl,4)i

got. close;

/5 Retrieve the remaining records 5

heed(hdri;

nlines a *

strapyl line, cfno)o

strcet(line, bud))

/5 Retrieve the first address record 5

if foexec(curs[21) 11

ofetch(eursC2 I))

if (aural21101-.4) t

else

orrrpt(curs[O1,4I;

got. *log*;

218

while foursCZICOI Is 4)

etreati line, N~)

If (at. (linup " 0) !2 0)

fresi budget~nlines 1)

j strlan~liie);

budgetlnes] calloo(j.1,1)s

stiopy(budget~nl in. Is line)s

if (9flag asn 1) writef(line)i

inlinm++i

ofetch(acurs21)s

1W Check for a very large entry e

if (nlines - 21)

elscolori POREGRNO ,SACKGRNO)i

ourlocat(Z1242)i

oolrprts ("****i***Entry exceedis 20 line.",

FOREGRND ,BACKGRND I;

curlocatfZ'.,2)s

oolrprts(Pro-e anyv key to contimue or Q to quit",

FOREGRNO ,SACKGRND)t

gmtkey(ii)

if (IJ uan 1q,) I I (j mu *'1) goto dCXeI

clseolorE FOREGRND ,ACKGRND)i

lines a 2

for (Jao; j -c nlinoss j++) printf(" X* n",budgettl 1

219

/* Check for a full screen 5

else if (lines + nlin.. > 23)

ourlocati 24,21);

colrprts(*Press any key to continua or Q to quit",

FOREGRtID BACKGRND);

gintkeyl 83)

lines a 2

if ((3 an q' IqI IQ' m)) goto dones

olscolor(FOREGRNO ,BACKGRND)

heed(hdr) s

/5 Check for a full pae.5

if tpflag Ui 14plines. + nlines) > 51))

plines 0;

i a (80 strloi(hdr))/2;

lprtf f(

for (3.11 j <z 6; 3,.) lprtlfo;

for fjmls 3 <z i; j,.) lprtchar(0, 1)';

lprtstr(hdr);

lprtcr(1;

lprtlf()

lprtlf()

/* Print the lines 5

for(jz0; j < nlinesi J++)

curlocati linespl0)s

colrprts(budget[jJPFOREGRNO,BACKGRND 3;

if (pflag)

for (imI, 3 Cz 91 3**) lp.hrO ')s

220..

lprtstv~budgetJll,

lprtorI 3I

lprt~f~ 3

plines++;

lines++;

lines#+1

if £pflag)

lprtcr(3

lprtlf(;

plines++l

ofetchlcurlll)i

If (gflag an 1)

I a exacuto2V~d: c graf tripber.exe'3;

* close:

* curloostl 24,.20)s

colrprtst" Press a key to continue 1

FOREGRND ,ACKGRND 3;

pause()3;

Is ClO** the hudget cursor 5

oclose(curs(113,

/* Free the budget array 5

forE imO1 £ < 50s I+*) fre(budgettil);

221

ILP X

if Ipflaog) Iprtff)I

setscmodl EIGHTY)s

borde BACKO)s

clacolor(FOREGRNSACKGOND);

1' program modula gattoto 5/

/5 version 1.0 /

1W authors: Richard N. NocMn 5/

/5 Mica-el F Rail 5/

Program last modified 11 December 19 6 /

/* Purpose: Displays budget vs expense to date for 5/

/5 current fiscal year, by cost class. 5/

/* Other modules called: SELBCL,SELECLwritef

/* Called by: TOBUDEXP

/* Files used: NOWE W

/* Files created: GRAF 5/

/a Local variables: clno,bud,exp 5/

/a line-0-, *budget-lOO-, *calloc(); 5/

is J9 pg, pflag, plines, lines, nlinesj 5/

222

% %

gettotol seleat, hdr, cur*)

char *select,

short our*11I3Z2i

cono(3 J,

bud[1IS 1

char line[SOl, *budgettlOOJ, 'calloofl

Ant is 3, pa, pflegs gflag, plinee, lineup nliness

n1 ns. a

setaood(EIGHTY)s

ecolor(FOREGU "0,SACKGt);

border I UXWMlD) s

eurlooet(1lZ,23)s

forli=Oi i C SO; i++) budgetlil * celloc(l,l)i

olrprtat "Do you went printed output (Y/N4)?" ,FOREGW. 0 SACK m i

if IgetyesnoE11

1* Initialize the print variable.s*

Pflag 8 ii

for Ijuli j <2 Gs J40 lprtlf~s

for (hul J <= 1; J++1 lprtdhartO, 1)

lprtstrl hdr);

lprterl)i

lprtlfl)

lprtlf(;

also Pflug Os

223

/w Initialize the go @0 variable '

curlocetl 14.231,

colrpfts(Greph Output £ Y/N 1?nFOID ,SPKGU I

if 19styesno~l)) gflag a 11

else gf lag a 0

/* Process the ORACLE requeset

/5 Open a cursor forther bugt 5

if (ocpniurslltcurs[0Io,-1,-1,-l-l,-11

*rrrpttacarsC0oI4)j

gate close;

/U Retrieve the first record 5

/m SELECT COST..CL-N0, S141LASM 1.51811 ATERIAL)+SUH(OTHER I,

FROM WOGET GROUP BY COST..CLNO

if (osql3(cursell], select* -1) 11

odefinours-1-9 It Ulo, sizeaf ci. .-. 1-,l-,1-II

oefintcursillp 2. C.3, sizecf bud, 5, -,1-,l-p1-1I

oexecicursil11

ofetchl curaC 1111

* ificurs(lI!01aa41

curlocatl 12.30 11

cclrprts("No Records Selected", FOREMMB.ACKGU NO)

gato close$

else

errrpt(cursO 1,4);

gato clote;

224

/ Open a cursor for the epense *

/0 SELECT COST-.CLJ4O .UILAOE JSM(MATERIAL).SWU OTHER)

FROM E)WENSE NHERE FT a (SELECT MAXIMFT FROM EXPONS)

AND COST-.CLNO a :COST-CLj40 ima BY COST_.CLIMa

if (oapenlure[21.ur,[01-,-l-l,-l,-lJ 11

oqlS31ursIZ1. sellad, -1) 11

o@efin(Gura[I1 Is Sca, siasof bm,

odefin(airs[21, to &mp simmf mop

gbndv(aswatl:CLND",-,Sswpls,-Il-l-l-l-l))

etwrptt aural O1,4)1

gate cllse$

/5 Retrieve the remining records 0

lines a 2)

heedUhdr II

stryes lie aks l

stroatiline,. "1s

strcati line, budis

stroet(linev " ;

/* Retrieve the first expense record ~

if foexecicurs[Z33 11

ofotahleursl2 1))

iffours2II1luu41

225

~~ '.~ ~ ~ , ~ '~ j~/~ ~ V % % a,%.VV%* %%%%

Orrtpt(airs 1010,*

Soto CO" .I

while Eaira(21101 !a 4)

street(linmes WOi

If (stromptlinsm. ") "1 0)

freeil budet~nliuue 1)

3 a strianllinei

budget~nlines] a olo(~v)

stropylbudgetlnlinee.J, line ii

if 1gflag an 1) writefilinal

nlines#+s

ofetdilacare(Z1)i

/a Check for a ver y large entry 0

if inue), 211

clacolorl PMOM ,WUNM)I

curlatl 12,2*)i

aolrprtsE ("********Entry eceeds 20 line.",

FOREGIW obACKOM I i

ciarlocetl 24,213;

colrprt.I "Pr... any key to cantin or Q to quit"*

FOREMMD,SACKONMQ 1;

getkayl Ii);

if I I an 1q,) I I I3m IQ'I Soto dote;

clacolort FOR!G4D S*CKGRNI Ii

line. m 2s

for Iju0s j < mlnen.. 3..) printfill 7s n",bL.dge t I I

226

As Ovok ftr a full sereantw5

alas. if (lies * nlines , 23)

uirleastl24.21Ii

eeirprtst"9sess mv) key to @antinj.e orO to yuitn,

vatkaytU AD

lins a*

if ((3o W) 11 I (Jo usW)3 gao.done

olsemlort FOREOS ,5ACKU) s

hmdi hdr) I

/0 Owak for a fullpgs/

if (pfla Lo8S ((Wins + nlines I > 51ll

pins 01

I a (80 - tr~en(hdrll/ts

Iprtfft It

for Oul$ J <a~ 61 J) lprtlf(Is

for (jels J <0 is J#41 lprtoher(G,' I

1tt.E hdr);

lp'torfli

lprtlf()j

lprtlf(31

/* Print thle Lines 4

forijaOs J < nlinesi J++I

curlocati linespl 0 1

olrprtsl budguti31 .FOREGU4D BACK Ul)s

If (pflag)

227

fortI tal I Ic J#*I pt340

1rtlf I

pliuis*41

if Epflao)

o~etc ~irt I)

close:

ourlooeti t2v20I

oolrprtel" Press a key to contiuem

FOREGM.BACKORM I I

/0 Close the budget cursor a/

ocloseE cure(IIis

/0 free the budget array 0

forlimOl i -c SO; i+*) free(budgetlls

if (pfleg) lprtff(3;

228

stome fromT I I

olassar BACum Ia me

/M/

/0 3

/w Program. last modified 11 Dsombe 1"6 3

/0 A Ppose: Slaplays budget ve appmnin to date for 3

/w current fiscal year, by cost functicn/cest cLass. 3

/0 Other modules called: SELUFCL ,SELECFCL 3

/a 3

/0 Called by: TUUSIW 3

/W3 PIes used:NOE/

/W 3

/N Local veriables: cfnesalam,bud~s9 3

/V llrs-g-, Obudgmt-100-v McaLOac Is 3

is 1, Pa pg.pfLag plines, lines. nlinest 3

gottotfce select. hdr, ours*)

char Oseact,

229

shot ours[11321;

bud 15 1

OW11511

int it Jo per pflag, plinse, lies#, nunes;

nI ns. a 0 s

sateamdlEIGHTY s

OleOoLort FOEGU ,&=MeU I s

bordert BAKSM

ourloosti 12,233;

for(LuC; i -c 50s 1.43 budttil x osllool,1)s

ooirpets("D. you went printed output (Yfl4 ?" ,FORtEGW4D.ACK M 3

if Igstyssnof l))

/w Initialize the print variables 5

pflag a I

for 1;l j ca 61 j+*3 lprtlfU;

for 1;l 3 <a 1s 3..) lprtcherO, ')I3

lprtstrI hdr) 3

lprtcr(3

lprtlf(3;

lprtlfI 3

else pf lag a 0;

plins a 0s

olacolorf FOREGRM ,BACKGRO I3s

230

-, 2, -*A e_ r .

/W Pro cess a te ORACLE request 5

/5 Open a cursor for the budgt 5

if (copenlurlllurslol-l-l-il,-l,-))

errvptlcursl1l ,4)w

goto close;

/5 Retrieve the f i.-,t recor,

/W SELECT COSTRILM.NO,- COST..CL..NO, LABOR*MATERXAL+OTHER

FRWM BUDGET WH4ERE LABOR !a 0 OR MATERIAL !a 0 OR OTHER !m 0 5

if Icsql(uratllo select, -11 11

odmfinlcurs-1-, 1, Safno sizeof cfno, S,-,1-1-,1-1-)I

odmfinlcurs-1-o 2, &lo sizeof elmo, 5,S ,l-1-,1-1-3I

odefintcurs-l'-p 3p C-39 sizeo# bud, 5,So l-l-,1-l-)I

axeolcurs~ll) 11

ofotah(cural 11)

lflours[1fl01uu4)

curlooatt 12,303;

cole-p.-tat "N Records Selected", FOREGRNO ,BACKGRNO 1;

Gate close;

else

errrpt(cur*101,41;

gate close;

/5 Opn a cursor f or the expetse 5

/* SELECT COST-FUi4..NOP COST-CL-NOP LABOR44IATERIAL.OTHER FROM EXPENSE

WHE!RE OT a (SELECT KAXI OT FROM EXPENSE) AND1

ILABOR !a 0 OR MATERIAL !x: 0 OR OTHER !a 01

AM4 COST-FUNJ4O a :CFNO AM4 COST-CLJ4:O a :CLNO 5

231

if (oopen(ursZIaus[0,-l-l-l-l,-l) 11

oeql3(=ur.1I* seleofal, -1) 11

odefin(cu's(Z21, 1, Safn, sizoof ofno,

odefin(=ursIZIP 2, Iclno, sizeof dnow

odefinfours[1, 3# LWP sizoof ep

obndrv(ursZl,:CLNO,-lln.-ll-l,-,-l.-l))

*rrrpt~ar*COl,*)$

goto alose

/W Retrieve the remaining records 0

line. 0 2 1

headlhdr);

WliI. (curselJC(0 10 4

strepyt line, ofmil

streatlline, "11

stroeti line, dno)s

stroettline, " M)

streatt line, bud)j

strcattline, " "11

/* Retrieve the first expense record V

if (axectcurs[21) 11

ofetch(cursl 21))

ifleurs[2)C01uu4)

also

232j

errrpt(ajrsCOl,4)1

gote close;

while (cur*1ZIKOI I= 41

if (St.apiline, N ") In 0)

free(budgetinlines hI

a strlen(linei;

lodgt~nlines] a calloc(j~l,1)l

strcpy(biUgtnlines 1, line);

ofetchlcus1211

/* Check~ for a very large entry 5

if (nMines, 21)

ciscolorl FOREGRND ,SACKGRNO);

curlocatilZ224);

colrprttf"W**s***Entry exceeds 20 lines",

A FOREGRND ,BACKGRND i

* courlocetl 24,21)i

colrprts(,6 ress any key to continue or Q to quit"#

FOREGRND,,ACKGRNO is

getkeyl £j);

if I~j 22 lq*) 11 tj an IQ')) goto done;

ciscolori FOREGRND ,BACKGRNO)s

lines a 2;

for IjzO; J < nlinesi J+*) printf("l 7s n' budgetlJl)i

233

is Check for a full screen W

also if (lines + nlines > 23)

curlocat(24*21);

colrprts("Proe any key to cantinue or Q to quit"t

FOREOMD BACKGND);

gmtkeyl 3j;

lines a 2s

if ((j an Iq') 11 (j arn IQ)) goto done;

olseolor(FOREGRNW ,BACKGRND 3;

hwad(hdr);

Is Check for a full pagw5

if (pflag S& ((Plines + nlin..) > 51))

i a (80 strlsnlhdr)3/2i

lprtffo ;

for (jul J <a 61 J++) lprtlfos

for (Jul$ j cz i; J++) lprtcher(Op)

lprtstr(hdr);

lprtcrU;

lprtlfl 3;

lprtlf(3;

/* Print the lines 5

for(J=a; j < nlines; j*+)

ourlocath linesi.l0)s

colrprts(budget~j 1,FOREGRNDBACKGRND 3;

if (Pflag)

for Ouli J <(9; J++) lprtcharlO, 1)';

234

lprtstr(budget[Ii)s

iprtcr();

lprtlf(3

lines";s

if (p41ISO)

lprtcrosi

lprtlfos3

ofetoh(oursr 11)

close:

curlocatf *,20);

colrprtsV' Press a key to continue 5

FOREGRNO ,BACKGRND)s

pause()$

/* Close the budget cursor 5

ocloselcurs[ll)i

/* free the budget array 5

for(i*O; i < 50s i++) fres(budgetl i);l

if (pflag) lprtffos;

border(IBACKGRNO J;

clacolorl FORE GRND ,BACKGRND)i

235

L% J.-

/program module gatfJo WI

/5 version 1.0 WI

/5 authors: Richard N. Noodmn W

/5 ichael F Rail WI

/5 Program last modified 20 January 1966 a/

/* Purpose: Given oost function mder, finds all 5/

/* Job order uabers under if. VI

/* Other moJles called: SELFJO WI

/5 Called by: JOINFO 5/

/V Files used: NONE 5/

/* Local variables: cfno,clno,jona WI

/5 line-W0-, Jobord-100-, *alloc()I

IN i, J, pg, pflag, plines, lines, nlinsl WI

getfjoiselect, hdr, curs)

char *select,

Nhdrs

short curs[I)32)s

/I BEGIN GETBUDGET ROUTINE W/

char

cfno(5),

dlnotS),

236

'd~~ V 'V

cher lin*1S019 *JabordtlOJ, acalloct 3;

int i, J, pg, pflag, plinw., lines, nliness

snline as0

stacoodi EIGHTY);

clsoolorl FOREGW4D PSACKGRND);

bordmr(BACKGR);

curlocat(lZ,23);

fort 1.0; i < Us; i+*) jobordtil a calloc(l~l);

colrprts("Do you want printed output (Y/N)?"vFOREGHNO ,SACKGRNO 3;

if (getyesnof 133

/* Initialize the print variables W

pf I" x 1;

for (Jul; j <m 6; J++) lprtlfl);

for (Juls J <a 1; J++) Ilprtcliar(Op 1)';

lprtstr(hdr);

lprtcrU ;

lPrtlf (3

lprtlf(3;

alse pf lag a 0

plines m 01

olsoolori FOREGRNO ,BACKGRND);

/* Process the ORACLE request 5

Is Open a cursor for the jobord 5

if (oopn(curs(l,curs[0J-l-l,-l,-l-33

arrrptlcurs(0l,4);

goto close;

237

/' Retrieve the first recmr 3

/*SE LECT COST-LDNj4O, COST..CL-.NO, JOS...OfD-.NO

FROM JOB-.aO MERE COST-M...NO

if loq13(curs[lJ, select, -1) 11

odefingeurs-l-, 1, Safno, sizeof cfno, 5, -,1-,l-,l-)I

odefinicurs-l-, 2, Somep sizoof dno, ,Sp l-l-,l-l-)I

odefinlcurs-l-,3, 1.Sjonop sizeof 3one, 5, s-ll-,l-,l-)

oemao(oursal1) 11

ofetchiajrsIlJ))

ificurs~lCO0uu*I

curlocatE 12.30);

celrprtsi "Na Records SelscteJ" ,FOREGR~0 ,ACKGRIQ 3;

gate close;

else

arrrpt(cursC03,4);

gato closet

/3 Retrieve the remaining records 3

lines z 2;

Ihead~hdr))

while (cursC11CO) != 4)

nlines a 0;

strcpy(line, cfno);

stroatiline,""3

strcst(line, cfnols

stroat~line, " 11);

streatE lire, cdna 3;

streat line, I

238

stroeti line, jona)s

If (strampilinep !a 1 0)

frost JoboodIni ins. I I

*strlan(lin3l

Jobord~nlines I a oelloc(j~lpl)i

etrcpyt Jobordinlineslp line);

/* Check for a very large entry U

If Wnines > 21)

clsoolorl FOREMRN *BACKORN);

ourlocat(12 24)i

colrprts("W**wNN**Entry exceeds 20 lines",

FOREGRNO ,BACKGRND);

ourlocati 24,21);

oolrprts("Press any key to continue or Q to quit",

FOREGRID ,BACKGRND ii

getkey(aj);

if ((j an 'q3II (j an IQ*')) goto done

cisclort FOREGRNO ,BACKGRNO);

lines z 2s

for 1Jz0; j < nlines; J..) printfi(" Vs n",jobordlji);

/5 Check far a full screen *

else if (lines + nlines > 23)

curlocatl 24,2131

olrprts("Press any key to continue or Q to quit",

FORE GRND ,BACKGRNO);

getkeyt ii);

239

lines a 2

if I I urn I q I 3m) goto dcnsI

clecolorl FOUSUQ NOBACKGU Ji

heed(hdr) s

/* Check for * full page 5

if (pf log &A (Iplines * nline) > 51))

i a (80 - trlanlhdr))/2s

lprtfff)t

for (Ju1s 3 4cu 6; 3..) lprtlfO ;

for 1321; J <= is J++) lprtchmri0, ')

lprtstr(hdr);

lprtcrl);

lprtlfl)

lprtlf(3

/* Print the lines 5

forlimo; 3 < nlines; 3,.)

curlocati linest10)i

colrprts(jobordtlj ,FOREGRNOBACKGRND 3;

if Ipflagi

for (Ju1; 3 cu 9s 3**) lprtchert0, ')

lprtatr(jobordC 313;

lprtcrI 3;

lprtlfl J

plines*4*

240

line++

if (pf lag)

lprtor(Is

lpftlf (I3s

plines++5

ofetch~curstl1 s

close:

curlocatl 24,2035

colrprts(" Press a key to cont inue

FOREORN) ,SACKGRND);s

done:

/* Close the jobord cursor W

oclosel ou.rC 1)s /5 Free the jobord array *

fortizOs i < S0s i* frealjobord[iUis

if (Pflag) lprtffo1)

set-- -d(EIGHTY)

borcierE SACKGRND 3;

alecolorE FOREGRJ0 ,BACKGRND)i

/5 program module getojo

/5 version 1.0

/5 authors: Richard N. Moocinan 5

/5 Michal F Rall 5

241

'- e, e. e- ...

.f wN.

/5 ~Pregros last imdii ted ZO jeu.mry 19S66i

/5 PurPose: Display-s Job order mimers edw given a i

/*S cost 0lass resWbr.3i

/5 Other sodulas called: SELCJO 5

/* Called bys JOINFO

/* File* useds MNtE 5

/a

/5 Local variablas: cfno,alm~,jano

/5 line-80-, *Jobord-lOO-, ScallocE)i 5

/5 i. J, P9, pflag, plins, lines, nlinesi 3

goeoitselect. hdr, curs)

char *select,

*hdrs

short ourstIt 32 1;

/* BEGIN GETBUDGET ROUTINE Si

char

cfno(5J,

alnoCS],

jai 151)

char lineLS0l, *jobard[lO0l, Scalloc(Ii

mnt i, J, pg, pflag, plines, lines, nlines;

nlines a 0;

242

seteamad Igow" JI

clemlorI POMUw VucMmw)

aurlosti 12,23)i

forlimol I -c S41 i..3 3obordil a alloc(l.lls

oslrptE"Do you tent printed output I YiN)?" ,POEGW ,ACKWU)I

if(90tyeenlD)

/w Initialize the print vauiabLes 0

pflag a 11

for £3.1, j <a 6s 3.,) lprtlfos)

for (jolt 3 <a Is .*) lprtdmer(0,

lprtstr4 hdr Ii

lprtorl 3j

lprtlfI)

lprtlfI R

e@Ie pf lag a u

PI ns. * 0 1

cisoolori FOREGU40 ,BACKON t I

/* Pe s the ORACLE request 0

/* Open a cursor for the 3@bord

if Inocpmncr~Icr(1-,1-,1-

*rrrpt(curstIo,4)i

gato close$

/* Retrieve the first record 0

/*SELECT COST-IM...NOP COST-CLMo, J0S-ORO.J4

FROIM JOS..9RD WHERE COST..CL.)bO *

if lasql3lcursl, select, -1) 11

adefin(curs-l-, 1, £cfno, sizeaf afno, So ,1-,1,l-,1II

adwfinlcurs-1-, 2, aclna, sizeef dna, 5, -,1-,1-,1-)I

243

odefinimor-l-, 3, &jonos sizo jams, So. ,l-l-,l-l-3I

oexeo~cursil1) I1

ofetchicusi 1))

if (our*(o1-4)

oolrprt.I"14 Records Selectedr ,FORE!G ,BACKGU)

got. cloes

else

*rfrrpt~cur(O3,*31

goto closel

/0 Retrievde the remaining records 0

lines a *

heedthdr)s

while (curs[lIC01 != 41

nlinee a 0

stcpy(line, alim 31

strcat(ljne, 1 "11

strcet(line, cfm~

stret(line, " ")i

stret(line, elma);

stretIline, 11"~

strcat(line, jane 3;

if (strcop~line, " "I !a 01

freel jobord~nlines]l

J a strleni line)i

jobordtnlinel a celloc~j~l,l3;

stropy(jobard~nlineel, line),

nljie.. i

/a Check for a very large entry M

If Wimes > 21)

clsoolor(FOREOUQ ,BcKG0 3

curlocat(t 2,2)1

colrprtst "ueeeaeS4HH*Entry exceeds 20 lines",

FOREOIM PBACKGRNO 1;

curiccati 24,2131

colrprtel "Press any key to continue or Q to quit",

FOREGMD,SACKGUID 3,

getkeyt 3D'

if ((j an 1q') 11 (j as IQ') goto dneml

calorl FOREGRNO ,SACKGU0 31

lines a 21

for 1jsO; j 4 nlines J+*3 printft" Ze n",jobard[J1)s

Is Check for a full screen */

else if (lines * nlines > 231

curlocatl 24,2131

cclrprts("Press any key to continue or Q to quit",

FOREORNO ,SACKGRNO 31

'A gsqtkey(Wt I

lines z u

if ((j ma Iq)I (j mu IQ')) goto doneI

clscolor(FOREGRNJO,BACKGRN4D 3

head(hdr~s

/5 Check for afull page 5

245

%4?~~'* . '. X .~-

if Win~a U ((pins * nlins) > SI))

i a (80 strln(Idr))/2;

for. (Juls J <= 6) 3..) lprtlflI; s

fore (Sal; j -c 11 3.) lptrtchsr(O, ';

lprtstr(hdris

lpteto(

Iprtlf 1 3

/5 Print the lines u

for(J=Os J < nlins; 3..)

ourlocatl lines,lo 3;

oolrprtsi obcrdC j ,FOREGRNO ,BACKGRND)

if IPflag)

for 1Ju1; 3 <= 91 3..) lprtcherlO, ')I

lortstrE jabordr ii)s

iprtcrf I;

lprtlfol

plins.*

line...;

lins-I*

if fpflogi

lprt1fI)s

246

/* Called by: INDVDISP W

/* File* used: NOWEW

1W Local variables: cfnavolnoobuadvewpW

/3 lin.-40-, Nbudget-lOO-s Ucellocf ~W
J3 , j, pg, pflag, plines, lines, nlin..;

gathouri select, Mdrs curs)

char *select,

*hdrs

short curst]C32hi

char

cfno(5),

bud(30 1,

oxp(30)$

char lina(80 1, *budgat(lO0), Wcallocf s

mnt is jo pg. pflag, plines, lines nlinass

nlines a 0;

setscmodl EIGHTY 3

clscolar(FOREGRND ,BACKGRND)$

bordar(SACKGRND~ 31U

curlocat(12,23);

fornijaG < 50s i++) budget~i] calloc(l,13;

colrprtsl "Do you want printed output Y/N 3?", FOREGRND ,ACKGRND 3s

248

/* Initialize the print variables 5

pilag a 1;

for (jal; j <= 6; j++) lprtlf()i

for (jal; j <=I j++) lprtcher(O,

lprtstrl hdr)i

lprter ji

lprtlfo J

lprtlfosJ

else Af lag Z 0

pli,*ws a 0

cisclari FOREGRND ,BACKGRND);

/* Process the ORACLE request 5

/* Open a cursor for the budget 5

if (oepen(cursIl,curs(OI,1,-pl,-l,-l,-1))

*rrrpt(curCOII))

goto close$

/* Retrieve the first record 5

/* SE LECT COST_.yUINNOv COSTS L-NO, HOURS

FROIM BUDGET 5

if (osql3(curs(IJ, select, -1) If

odefin(curs-1-, 1, &cfna, sizeof cfno, 5,SP 1-1-,1-l-)I

odefin~curs-1-, 2, Ino, sizeof clno,5 l-l-,1,l-,-)I

odefinlcurs-l-, 3, C.3, sizeof bud, S, -,l-,l-,l-)I

oexec(curt(1II

ofetch(cursill))

if (curs 11110]=4)

249

-- -. ~ -v -tow.. r .. *

curlocati 12,30)t

colrprts("No Records Selected" ,FOREGRND,BACKGRND)i

gota close)

else

*'~rrptlcursI0J,4);

goto close$

I' Open a cursor for the expense 5

/* SELECT COST-.FUN-NO, COST-.CL-.NO, HOURS

FROM EXPENSE WHERE DT z (SELECT MAX(I FROM EXPENSE) AND

COST-FUN-NO a :CFNO AND COSTCLNO x :CLNO 5

if (copenfcurs[2J,ourslv-l,-l,-l,-l,-11 I

osql3(cursEZl, selehour, -1) 11

odefin(cursC21, 1, &cfno, sizeof cfno,

odefin(cursl2], 2, &chjo, sizedf cino,

odefin(curs[21, 3, 3exp, sizeof exp,

bdrv(cursZ2l,':CFNO",-l,Icfno,-l9l,-l,-l,-l,-l) 11

obndrvtcurs 2 1,":CLNO" ,-l9iclna,-lpl,-l,-l-l-1)

errrptIcurs[0J,4)1

goto close;

/* Retrieve the remuaining records 5

lines * 2;

hesd(hdr);

while (curstlJ(O1 !z 41

nlines Os0

250

strapy(line, cfno)

strost(line, ")

strcett lira, clna)i

stretlline, 11"~

strcati line,. bud);

/* Retrieve the first address record 5

if (oexec(cursl21) 11

ofetchicurs[21))

ificursI21I0lu*)

else

errrpt(curs[0hj4);

gate close$

streatf line, ex "

if (st cm (line, *11) !x 0)

free(budgetlnlinesD;)

j strlen(line)i

budget~nlines] a calloc(J+l,l);

stropy(budgetlnlines], line)l

nlines+*

ofetchtcurs[2 1);

/* Check for a very large entry 5

if (nlines > 21)

251

olsoolorI FOREGRND ,BACKGRND)i

ourlocati 12,24)s

*colrprts(" * 5W**Entry excemeds 20 lines",

FOREGRND ,SACKGRND I;

curlocatl 24,21)s

colrprts('Press any key to continue or Q to quit",

FOREGRND ,BACKGRt4D);

getkey(3j);

if ((j am 'q') I II (j asn 141)) goto dkoe

ciscolorl POREGRNO,BACKGRND I;

lines m 2;

for limo; J < nliness J++) printff" Vs n',budoettil);

/* Check for a full screen 5

else if (lines + nlines > 23)

curlocatl 24,21);

colrprts("Press any key to continue or Q to quit",

FOREGRND ,BACKGRND);

getkey(&ijs

lines m 2;

if ((j an 'ql) 11 (j x= 'Q')) goto done;

clsoolor(FOREGRND ,BACKGRND);

head(hdr);

/* Check for a full page 5

if (pflag && ((plines + nlines) > 51)3

plines * 0

i a (80 -strlen(hdr)3/Zs

lprtf-fl 1;

for (Jul; J <a 6; J++) lprtlfh 3

252

for (ji j <= Is J++) lprtchar(O,)

lprtstr~ hdr)3

lprtcr()

lprtlf I i

lprtlfo ;

/W Print the line* W

for J*Oj j < nlinest J*+)

ourloceti lines ,lo)

colrprtsl budgetti j1,FOREGRI .BACKGRND);

if (p11mg)

for (jai; 3 <= 91 3,,) lprtcherlOp ')

lprtstrbudgetIjl3;

lprtcr(i

lprtlfo;)

plines++;

lines*+;

line...i

if (pf1mg)

lprtcr();

lprtlfo)

pliews+#

ofetch(curstll);

close:

curlocatt 2',20)s

colrprtsi(" Press a key to continue

253

FOREGRNO ,BACKGRND) t

done:

/5 Close the budget cursor 5/

oclose(curs[1I);

/* Free the budget array 5/

forlixOi I < 50s i+) freelbudgmtl])i

if Ipflag) lprtff()

netcodi EZGHTY)s

border(BACKGRNO)

clscolor(FOREGRND ,BACKGRNO)

/5 program module getlab 5/

/5 version 1.0 5

authors: Richard N. oodman

/5 Michael F Rail /

/5 Program last modified 20 January 1986 5/

/* Purpose: Displays budget vs expense by cost function 5/

/* cost class for labor to date.

/5 Other modules called: SELLAB, SELELAB 5/

/* Called by: INOVDISP 5/

254

I r K

:: 2oa aibles:cflo,allobud,.o

/5 line-SO-, *budget-100-P , loo

it 1,P1 pot pflag, plin.., Ln lines

gatlab(select, hdr, cur*)

char 'select,

*hdr;

short cursE (32);

c h a r c n (~

exp(20 1;

char lineESO), bugt(100), Wcallac()s

int it j, pg, pfleg, plines, lines, nlines;

nlines a 0;

setscuodE EIGHTY);

clscolori FOREORHO ,BACKGRND);

borderE BACKGRND);

curlocatE 12,23 ii

forE juG; i < SO; i++1 budget~ll x callac~l,l);

colrprtsE "Go you want p.-inted output (Y/N'","FOREGRNDSACKGRNO);

if Egetyesnoil))

/* Initialize the print variables 5

255

pflag a 1;

for (ja1s 3 (3 6; *+) lprtlfl 11

for (JaU1 J <a 1; 3..) lPrtchar(0,*

lprtstr(hdr) s

lprtcrlii

lprtlft)

lprtlf(J

also pf1mg a 01

ciscolori FOREGRND BACK(GRND);

/W Process the ORACLE request W

/W Open a cursor for the budget W

if (oopen(crs~llurslo,-1,-1,-1,-1,-1)J

A errrpttcurs[0I,4)s

* goto close;

/W Retrieve the first record W

/* SELECT COST..YUN-40, COST-.CL-NO, LABOR

FROM BUDGET W

if tosql3lcurstll, select, -1) 11

odefjn(curs-1-, 1, 3cfno, sizeof cfno, 5,S ,1-1-,1-1-)I

odsfin(curs-1-, 2, icino, sizeof clna, 5,S ,1-1-,l-1-)I

odefin(curs-1-, 3, C.39 sizoof bud, 5So ,1-1-,1-l-)I

oexec(curs(ll) If

afetch(curs(Il))

curlocat(12,30)1

colrp-ts("No Records Selected" , FOREGRND ,BACKGRNO I;

goto close$1

256

Z0111~~~~*- ZO?'.- KN QYN e

errrptlcursl0l,4)s

goto close;

/* Open a cursor for the expense 5

/5 SELECT COST..FU4NOP COST..CLAO, LABOR

FROM EXPENSE MHERE DT a (SELECT KAX(DT) FROM EXPENSE) AMD

COSTJIM...NO a:CFNO AND COST..CL..NO z :CLNO 5

if cocpnlcurs(2,cursCol-l-l,-l,-l-13 II

osql3(curs(21,. selelab, -1)11I

cdefin(curstZlo 1t &cfna, sizeof cfno,

odefin(cursC21, 2, &Slo, sizeef clna,

odefinlcur*12]v 3, £exp, sizeef exp,

aimdrvtcurs[21,":CFNO',-lSofna,-l,1,--l,-1,-1) 11

mrrrpt(curslO2,4)s

gate close;

/* Retrieve the remaining records 5

lines a 2;

headlhdrl;

while (curs~l](01 !a 41

strepyl line, cfno);

strcatlline, c" jl
257

sw r WW' W-

calrpirts(mm Hi*m11w"HEntry exceeds 20 lines"

FOREGMt,BACKG"I

ourlocati 24,21)i

colrprts("Prossa any key to cont inue or Q to quit",

FOREGRD,BACKGt);

getkay(&j)i

if ((j ma Iq) 11 (j an IQ')) goto dons;

clacolorl FOREGMtBACKCRO)

lines a 2

for 1jz0; j Ic nlines; i,,) printf(m Vs n",budget[JI);

/* Check for a full screen W

also If (lines + nlines > 23)

curlocet(24,21)t

colrprts("Press any key to continue or Q to quit",

FOREMRN ,BACKGRNO)

gatkey(a3)l

lines 21

if I (j an IqI I j 2a I'')) gate donei

elscolor(FPOREGANO ,BACKGRND I;

head(hdrls,

/* Check for a full page 5

if Opflag 35 11plines + nlines) > 51))

plines =0;

i z (80 -strlen(hdrl)/2s

lprtff(I

for (imtli j <= 6; 1J++) lprtlfl)

for (jz; j <z ii j+.) lprtchar(0, I Ili

lprtstr(hlr 1;

lprtcros3

259

lair It J3 ~ P.P~? P ~. ~F

lprtlft I

lpktlf I

/5 Print the lines 5

fort .0; j < nlne.; j..)

ourloaet(lines ,l0 I

oolrprts(budgetlj I,FOREGRD,SA=K6Q);

if (pf "g)

for (jals j <= 9; J++) lprtcherl0,

lprtstr(budgtj]),

lprtcrU;

lprtlf(3;

planes..;

line.s-;

line...,

if tPflagi

lprtcrl);

lprtlf(;

plines#*;

ofetchlcurst 11);

close:

curloestf 24,203;

colrprts(II Press a key to continue "

FOREGRNO ,SACKGRND)i

pausef 3;

done

260j

/* Close the budget cursor a

oclosei curs(11);

/' Froe the budget array W

forliuOs i < SO; i*+ freelbudget[i])l

if (pflag) lprtffl)I

setscmodl EIGHTY)-

border(BACKGRNO)s

clswolor(FOREGRND ,SACKGRND) 5.

Ia program module getmat WI

1W* version 1.0 WI

authors: Richard N. Noodman

/- Michael F Ral l/

IS Program last modified 20 January 1986 /-

/5 Purpose: Displays budget vs expense by cost function 5/

/* cost class for material to date. a,

/* Other modules called: SELMAT, SELEMAT WI

/* Called by: INOVDISP W/

/I Files used: NONE W/

/* Local variables: cfno,clno,bud,exp 5/

1W line-SO-, Wudget-lO0-, scslloci I) 5/

261

S A A - iX.

is 1, 3 pg, pflag, plins, lines, nines; 5

gametlselectP Mdrs curs)

char salct,.

*hdrs

short cursl 11321;

char

budl 201,-

expC 201;

char linelS01, *budget[1001P *calloci ;

int i, j, pgP pflag, plines, lines, nlin..;

setsuod(EIGHTY)S

ciscolari FOREGRHD ,BACKGRNDIs

border IBACKGRNO I;

curlacatl 12,23)i

forE i=0; i < 501 1++) budgetlil a calloc(l,l)t

colrprts("Do you want printed output I V/N)?" ,FOREGRND ,BACKGRNO)s

if gtanl)

/* Initialize the print variables 5

pflag Z 1;

for (3.1; 3 <z 6; 3..) lprtlfos

for (331; j <a 1; 3.4) lprtchar(0, 'Is

lprtstr(hdr I

1prtcr();

lprtlflis)

262

lprtlf(i

also Pf lag 0Oj

plines z 0;

clsclor(POREGRNO ,BACKGRND)s

/* Process the ORACLE request s

/* Open a cursor for the budget 5

if (oopencurs(l,curs[01,-l-l,-l,-l,-1))

errrpt(cur*C0l,4))

goto close$

/* Retrieve the first record 5

/* SELECT COSTRILNNO, COST..CLNOp MATERIAL

FROM BUDGET 5

if Iosql3Ecursll select, -1) 11

odefintcurs-l-, 1, 9cfnop sizeof cfnop 5,Sp l-1-,1-l-)I

odefin(curs-l-,. 2, lolnop sizeof clna, 5,Sp 1-1-,1-1-)I

odefin(curs(l, 3, C.3, sizeof bud, 5,so 1-l-,l-l-)I

oexec(curs(1I) 11

ofetchicursEll))

ificursC1JC01-4)

curlocatl 12,30)s C

colrprts(I"No Records Selected"PFOREGRNO ,BACKGRND)s

goto close$

also

arrrpt(cursLOJ,'.);

goto close$

263

% *-

/* Op'en a cursor for the expense 3

/3 SELECT COST-LRN-N0, COST..CLNO, MATERIAL

FROM EXPENSE NNERE OT a (SELECT MAXIOT) FROM EXPENSE) AND

COST..P)NLNO z :CFNO AND COST-CL-NO z :CLNO 3

if (oopen(curs(21,curs(OJ,-l,-l,-l,-l,-l) 11

osql3fcursL22, seleimt, -1) 11

cdefin(curs[2]p 1, acfno, sizedf cfna,

odefintcurs(21, 2, &clno, sizeof dna,

odofin(cursCZ), 3, Sexp, sizedf GXP,

cnrvlcursC21,":CFNO",.-lAcfno,-lpl,-l,-l,-l,-lI 11

cbndrv(curs121,":CLNO",-lIclno,-lpl,-l,-l,-l,-l))

arrrpt(curs[01,4)s

gate close$

/* Retrieve the remaining records 3

lines a *

ed(hdr);

nlines a 0

strcpyE line, cfno);

streat(line, " e)

strcat(line, cnl

strcat(line, bud~ I
/* Retrieve the first address record 3

if (oaxec(curstZl) 11

ofetchleursC21))26

iursZIC1luu4)

else

errrpt(cwuw.[OJ,4)s

gote close;

whille cur*121101 In 4)

strcattline, " IIs

strcati linev exphs

if (stromp(line* " 11) 10

free(budgettnlines)1

j=strien(line);

budget[nlines) m calloclj+1,l)3

stropyl budgetinlines, line);

nlines** I

ofetch(cursCZI i

/* Check for a very large entry 5

if (nlines > 211

clscolor(FOREGRND ,BACKGR IW

curlocat(l2924)s

colrprts ("*********Entry exceeds 20 lines',

FOREGRND ,BACKGRND iI

curlocat(24,21)s

colrprts('Preas any key to continue or Q to quit",

FOREGRNU ,BACKGRND);

getkayfl~ Pil

if ((j * q') (jti *Q*)) goto dones

265

clecolorE POR!RND BSACKGMt);

lines a 2;

for (J=0; j < nlines; is.) printf(*' Xs n",budgetlJl);

/* Check for a full screen

oleo if (lines + nlines > 23)

curlocat(24,21);

colrprts("Press any key to coi t mai or Q to quit",

FOREGRND ,BACKGUID);

getkay(&j);

lines a 2

if ((j zu Iql] 11 (j xu IQ)) goto done

clscolar(FOREGRN ,BACKGRND I;

head(hdr);

/* Check for a full page 5

if (pfleg 13 l(plines + nlines) 51S))

plies = 0;

i a (80 -strlera(hdr1)/2i

lprtff(;

for (jfl; j <a6; j++) lprtlfl)

for Ejl; j <z i; J++1 lprtcher(0,

lprtstrE hdr I s

lprtcr();

lprtlf(;

lprtlfo ;

/* Print the lines 5

forlizO; j <nlines; j++)

266

oolrprtsl budgeti ii,FOREGRND ,SACKGRN'D)I

if Ipflagi

for Ijuls j cm 9; :j++) lprtcher(O,)

lprtstr(budgetkj]l

lprtcro;

lprtiflf(

lines++;

Line.++;

if Epflagi

lprtcrE 3;

lprtlfos3

plines..;

ofetchlursIll;

close:

curlocatf Z*,ZO 3;

oolrprtsi" Press a key to continue

FOREGU4 PSACKGRN I;

done:

/W Close the budget cursor 5

oclose(ursl 113;

/* Free the budget array 5

forlizO; i C SO; i++) freslbudgettil)l

if lpfLagi Ilprtff(i$

aetscuoadtEIGHTY 3;

267

border(BACKSR)

olslor(FOREGRNO ,BACKGRNO)i

program module getoth 5/

/5 version 1.0 5/

/5 authors: Richard N. Hoodman 5/

/5 Nichael F Rail a-

/5 Program last modified 20 January 1986 5/

/W Purpose: Displays budget vs expense by cost function W/

/* cost class for other to date. 5/

/* Other modules called: SELOTH, SELEOTH 5/

/5 Called by: INDVDISP 5/

/* Files used: NONE ./

/* Local variables: cfnoclnobud,exp 5/

/5 lin-80-, *budget-lO0-, *calloc;()

/ i, j, pg, pflag, plines, lines, nlines;

gotothi select, hdr, curs)

char *select,

*hdr;

268

short cursE 11321;

char

cfna[Sl,

clno[S],

budl 201,

exp(201;

char lineLS01, Nbudgettlooll, scalloco; '

int is jv pg, pflagp pines, lines, nuin..;

nlin.. x 0;

setscuod(EIGHTY) I

clsoolor(FOREGRND ,BACKGRNO)

bordsr(BACKGRND)s

curlocat(12,23);

for(im0; i < SO; i**) budgettil acalloo(1,1);

oolrprts(I"Do you want printed output (Y/N)?*,FOREGRNDBACKMRD)

if (gstyesno(1))

/W Initialize the print variables 5

Pflag a 1;

for (juls <a (61 3++) lprtlfo;

for (jul; j <= Is j++) lprtcharlO, *)

lprtstr~hdr) s

lprtcr(;

lprtlf j
%;

lprtlf(;

else pf lag a 01

plines a 0;

clsco lorE POREGRNO ,BACKGRND D;

/* Process the ORACLE request 5

269

Is Open a curs for the budget *

if (oopen(cursll,curs[0l,-l,-,-,-,-I

arrrpt~curs[Ols,4);

gato close;

/* Retrieve the f irst record 5

Is SELECT COST-WNO,~ COST *..CL-NOv OTHER

FROM BUDGET */

if Eosql3lcurs1I, select, -1) If

odefinlcurs-1-v 1, cfme, sizeof afna, So-,1-,1,11-)I

odefin(curs-1-, 2, acmep sizeef dna, 5-,1-1-,1-1-II

odefin(ours-1-,. 3p C.3p sizeof bud, 5,S ,l-l-,l-l-)I

oexeclcurs[13) 11

ofetch(curs[11))

if (cur*(IIt 0 1-4)

cuirlocati 12,30hs

calrprts("Na Records Sele ed"POREGRNO ,BACKRO Is

else
oocoe

errrptlcurs1OI,4);

gate close$

/* Open a cursor for the expense 5

/* SELECT COSTFl*4jO, COST-CL..NO, OTHER

PROM EXPENSE I'*ERE DT z (SELECT 1IAX(DT) FROM EXPENSE) AND

COST-FUPNNO 2 CFNO AND COST-CLNO z :CLNO

if (aopen(cursZ,cursC,-,-l-l,-l,-l) 11

osql3Ecurs(21o seleoth, -11 If

270

odefin(curs[Z], 1, £cfno, sizoof cfno,

odefin(curst2lp 2, Solna, sizeof olno,

odefinlcurst21l. 3, &oxpv sizeof exp,

obndrv(curs(2 1,":CLNO"-lclno-lpl-l-l,-l,-)

arrrpl cursi 01.);

goto close;

/* Retrieve the reining records 5

lines a=Z

headi hdr) I

strcpyl lia Os a)

strcpt(line, " "JI

strcat(line, 11 ")1

strcet~ljne, el "

streattlins, bud)s

/* Retrieve the first address record V

if loexec(curst21) 11

ofetchicurslZ 1))

if(cursZJ[O]zz4J

also

arrrpt~cursC01,4)s

goto close$

2711

while (curs12flOJ !a 4)

streatiline, "

stroattline,. exp);

if (strcmpline, " 1 1 0)

free~budgatInlineas)

budgetlnlines] a calloc(J.l,lJ;

strcpy(budget~nlinesl, line);

ofetch(curst21)s

/* Check for a very large entry 5

if (nline. > 21)

cisoolorl FOREMRN PBACKGRND) 3

ourlocatl 12,.24.);

colrprts("**I***W***Entry exceeds 20 lines"

FOREGAND ,BACKGRNO 3;

curlocatl 24,21); :

oolrprtsl "Press any key to continue or Q to quit",

FOREGRNO ,BACKI3RND)i

getkeyl aji;
if (!j on Iq) 11 (j uz I'*)) joto dote

cisclorl FOREGRND ,BACKGRND);

lines a 2s

for (J=O; j < nlines; J+*) printf("l Ys n",budget(jJ)i

/* ChecK for a full screen 5

272

.r r r. r or 1, r-.rI

else If (lines + nlines > 23)

curlocat(2.21)1

colrprts("Press eny key to continue or Q to quit"s

FOREGRNO ,BACKGRND31

gatkeyl iiii

lines *2s

if M~ so Iq) I 1 0j an I') oto dkoe

clsoolori FOREGRtQ ,ACKONDte1

heed(hdr)s

/3 Check for a full paes~

if (pflag A& ((plines * nlinesi > 51)3

plines Ot0

I a (80 -strlen(hd,33/2t

lprtf4(JI

for (Jul; J Its 6; J**) lprtlfl 3

for IJuli J Its is J+* lprtdinr(0, Il

lprtatr(hdr I3s

lPrtcr(3;

iprtlf(31

lprtlfo ;

/* Print the lines 5

for1Exjag j nlines; J**3

curlocati lifles*lO 3

colrprts(budgetti j FOREGRND ,BACKGRt4O 31

if (Pflag3

for (jal j <a Iss J++) lprtcher(Q, l%

lprtstrE budqetC j131

lprterE 31

273

lprtlfl Ii

plines##s

line...,

lines.. I

if Ipf lag)

lprtcr()

lprtlfl 1;)

planes..;

ofetch(cursElI)i

close:

curlocati 24.2OI;

oolrprtsl" Press a key to continue

FOREGRt ,BACKGRND);

"ause')t

/* Close the budget cursor 5

oclose(curs(l11)

/* Free the budget array 5

fo.-(ina;i I <5S; i**) free(budgetliI);

if lpflag) lprtffl);

sets-d (EIGHTY)s

borderE BACKGRND I;

clscolorE FORE GRND ,BACKGRND i;

274

/5 program mo.ule gatlsi

/5 version 1. 0

5 authors: Richard N. Noodman

/s Michael F Rail 5/

/5 Program last modified 20 January 1966 'i'

/* Purpose: Displays budget vs expense total 5/

i's to data. 5/

/* Other modules called: SELSU, SELSUMA 5/

/* Called by: TOBUDEXP 5/

/* Files used: NOE

/* Files created : bud,grafl 5/

/* Local variables: cfno,dte, budexp 5/

/5 lin-80-, *budget-lO0-, calloc();

/5t i, 39 pg, pflag, plines, lines, nlines 5/

/ = : :: : ---------- ---::---- -- -- - -- - ----r.= : .:= rrr = = .- = : -

getsum(select, hdr, curs)

char *select,

*hdrs

short curst(32l'

char

cfno(S1,

dte(10],

bud[151,

275

chamr line(S01, *budget[IOOI, Woalloco ;

int i, J, pgp p41mg, gflag, plines, lines, nlin..;

setsc, d(EIGHTY);

elsoolort FOREGRNO ,BACKGRND)i

bee-de-I ACKORNO);

curlocatl 12P23)s

fo-Ii=O; i < 50; i++) budgettil z calloc(1,1)l

col-petal 'Do you want printed output (Y W)",FREGRND,BAC:KGRND);

if (getyesna(3))

/* Initialize the print variables W

pf1mg Z11

foe- (Ju1; 3 <2 6s j+*) lprtlf(3;

for (Ju1; J <a 2; J++) lprtchme-(0,

lprtstri hdr);

ipertfo;

alse pf lag 2 0;

plines z0;

Ia Initialize the graph variable W

cue-locatt 14,231;

colrprtsi "Graph Output (V/N)?* , FOREGRNO ,BACKGRND)s

if Igetyesno(l)) gflag 2 1;

also gf lag Z 0;

clseolort FOREGRND ,BACKGRND);

/* Process the ORACLE re "est 5

1* Open a cursor for the budget 5

276

if (oopen(curs~l],cursC01,-l,-1,-1,-1,-1)I

errrptlcurs10I,4)s

goto cose$

I' Retrieve the first record 5

/* SELECT SINMtLABOR)eSUM(MATERIAL)+SUM(OTHER 3

FROM BUDGET HHERE COSTFUJNON < 1920015

if (osql31curs~l), select, -1) 11

odefin(curs-l-, 1, C.3, sizeof bud, 5,vl-,1-,-,1-JI

oexec(curstll) 11

ofetch(curs1))

if (cur*(I Iolin-4)

curlocat(12,30);

colrprts ("No Records Selected", FOREGRND ,BACKGRND 3

got* close)

arrrpt(curs[01,4);

goto close$

/* Open a cursor for the expense 5

/* SELECT SUM(LABOr(3.SI.N(MATERIALI.SZJI(OTHER3, OT

FROM EXPENSE

WHERE COST-FUNNO a :COSTFtL4J GROUP BY DT*/

if (oopen~curs21,curs[1,-l,-l,-,--)

osql3(curs(2I, selsiana, -1) 11

odefinicurs(21, 1, Zexp, sizoof exp,

adefin(curs[Z1, 2, &dta, sizeof dta,

277

errrpt~cursIOl,4);

goto close;

/* Retrieve the remining records 5

lines a 2;

head(hdr);

while (curs~l][OI !a 4)

nlines z 0;

strcpyl line, bud);

if (strcpE line, 1 11) != 0)

freed budgatinlines I);

j=strien~line);

budget~nlines) m calloc(j~lvl);

strepy(budget~nlines], line);

if (gflag =a 1) writefb(line);

nlines++;

/* Retrieve the first expense record 5

if (oexec(curs[21) 11

oatch(cursrzj)

ificursll]0I==4)

else

srrrpt(curs(O]p4);

goto close$

278

IN

/* Check for a full screen 5

elso if (lines + nlin.. 23)

curlocat(24*Z1)i

colrprts("Press any key to continue or Q to quit",

FOREGRND ,BACKGRND is

gatkay(aJls

lines. Zs

if ((j an IqI) 11 (j un))goto done;

clseolor(FOREGRND ,BACKGRND i

head(hdr)s

/* Check for a full page *

if (pflag 33 E(plines + nljnes) > 51))

plines z0O

i a (80 - strlan(hdr))/2s

lprtff()

for (j1l; j <= 61 j++) lprtlfEos

for (j~ll j <z is j++) lprtchar(0, ')

lprtstr(hdr);

lprtcr(i

lprtlf(3;

lprtlf()

/* Print the lines 5

for(j=0; j < nlinesi j++

curloca t (1ines,l10)

colrprts(budget j],FOREGRND,BACKGRNO is

if lpflag)

for (j=l; j <= 9; j++) lprtchertO, 'i

2800

r W -~~ *~~*%%~~~ %0 0%I.~ ,S**S ~ * * . .

lprtstrlbudgetlJj 3;

lprtcro)

lprtlfo J

plines++i

lires++;I

lines..;

if Ipflag)

lprtcr(i

lprtlf()w

p1 in....s

if (gflag 2 1)

i a executez("d: lyos6 .exe" ,"lyons6" J;

ofetch(curstllJ;

close:

curlocatf 24,20);

calrprts('* Press a key to continue

FOREGRND ,BACKGRHO);

pause[)$

done:

/0 Close the budget cursor *

oclose(curs~l3)

/* Free the budget array

for(i=Os i < 50s i++) free(budgetlil);

if (p-flag) lprtff()

*etscuodE EIGHTY)i

281

border iBACKGRND)i

ciscolort POREGRNOBACKGRND);

3. ORCAINP

static char selfsuatC m "SELECT COST..CL.3IO, OTLABOR+STLABOR,

MATERIAL, OTHER

FROM BUDGET WHERE COSTP1*4_NO*"

static char seasimClz "SELECT SUMIOTLABOR)+SUM(STLABOR)+

S1I(MATERIAL).SII(OTHER)

FROM BUDGET"

static char selsua(Is "SELECT SUMR(STLABOR)+S4A1(OTLABOR)+

SUM(MATERIAL)+SLI(OTHER) ,DT

FROM EXPENSE GROUP BY DT"

static char seIclsC lm "SELECT SLN(OTLABOR)+SUM(STLABOR)+

SUM(1MATERIAL)+SUM(OTHER)

FROM BUDGET W'HERE COST-CL-NO "

static char selfunatea "SELECT SUMNfOTLABOR).SUMISTLADOR)+

SLIIIMATERIAL)+SUM(IOTHER)

FROM EXPENSE WHERE COSTP1*4_NO x

static char selclse~lz "SELECT SLJMOTLABOR)SUM(STLABOR)+

SUHI MATERIAL)+SLI(OTHER)

PROM EXPENSE W'HERE COSTCL-NO "

static char seltatC 1= "SELECT SUM(OTLABOR+SIUt(STLABOR)+

SU.R(MATERIAL 1451311OTHER)

PROM EXPENSE"

static char selefuC 1 "SELECT COST-y1*I..NO,Slii(OTLABOR)+

SU*11STLABOR).SLRIIMATERIAL),S1*(OTHER)

PROM EXPENSE WHERE OT z (SELECT MAX(OTI FROM EXPENSE I

AND COST-FUN.)0 :cfno GROUP BY COST-.FL*LNO"l

282

VN , - A p- - Y.

static char saleclC 1 "SELECT COSTCL.)JO,SUM(OTLABOR)+

SUM(STLABOR).SUMI MATERIAL).SI1(OTHER)

FROM EXPENSE WHERE OT a (SELECT MAXI OT) FROM EXPENSE)

AND COST_.CL_.NO z :clna GROUP BY COSTCL_.NO" i.

static char solbfwu[I. "SELECT COST-YUN...NO, S4*1(OTLAB0R)+

SLI(STLABOR 1.SU4(MATERIAL)4SLI(OTHER I

FROM BUDGET GROUP BY COST-.FUJLNOll

static char selbcIC 1 "SELECT CoSTCL..$O, SIJI(OTLABOR)+

SUMI STLABOR).S.NMMATERIAL).SUM(OTHER)

FROM BUDGET GROUP BY COST-CL-: 0"

static char selbcfclt 1 "SELECT COST-.FUN-NOp COST-CL-NO,

OTLABOR+STLABOR+MATERIAL+OTHER

FROM BUDGET WHERE OTLABOR != 0 OR STIABOR !0 OR

MATERIAL !0 OR OTHER != 011

static char selecfclC 1. "SELECT COSTF114j'O, COST-CLJ'IO,

OTLA8OR+STLABOR+MATERIAL4OTHER FROM EXPENSE

WHERE OT = (SELECT KAX(OT FROM EXPENSE) AND

(OTLABOR !z 0 OR STLABOR != 0 OR MATERIAL !z 0 OR OTHER !z 0)

AND COST_Ft*_NO z :CFNO AND COST_CLNO z :CLNO"

static char selhourElz "SELECT COST..JUN..NO, COST-CL..NO,

OTHOURS.STHOURS

FROM BUDGET " ;

static char sellablIm1 "SELECT COST-FUNLNOP COSTCL-IO,

OTLABOR.STLABOR

FROM BUDGET "1

static char salmat(I] "SELECT COST-.FUNLNO, COSTCL_.NO, MATERIAL

FROM BUDGET "1

static char salothC 1. "SELECT COST-FURLNO, COST..CLNO, OTHER

FROM BUDGET"

static char selehourla3 "SELECT COST-.FI*NN, COST-.CL-.NOP

283

OTHOURS STHOURS

FROM EXPENSE NHERE OT a (SELECT KAX(DT) FROM EXPENSE) AND

COSTFUNHNO a :CFNO AND COSTCL-NO = :CLNO "

static char selelab " SELECT COSTFUHNO, COSTCLNO,

OTLABOR+STHOURS

FROM EXPENSE WHERE OT = (SELECT MAX(OT) FROM EXPENSE) AND

COSTFUNNO a :CFNO AND COSTCLNO • :CLNO " I

static char selemat[I] "SELECT COST_FUN_ NO, COST_CLNO, MATERIAL

FROM EXPENSE WHERE DT a ISELECT NAXIDT) FROM EXPENSE) AND

COSTFUNNO x :CFNO AND COSTCLNO a :CLNO "

static char seleoth(]x "SELECT COSTFUN.NO, COSTCLNO, OTHER

FROM EXPENSE WHERE OT z (SELECT MAX(DT) FROM EXPENSE) AND

COST_FUN_NO x :CFNO AND COSTCL_N a :CLNO

4. BAR.C

/5 program module Bar.c 5/

/5 version 1.0 5/

/5 authors: Richard N. Woocmn

/5 Michael F Ral/

/5 Program last modified 20 January 1986 5/

/* This program was produced on an IBM clone using

/* DOS 3.1. Written with the C programming language, 5/

/* utilizing the GraphiC utility software.

/* This is called directly from DOS after the PROJ I/

/* system has been processed. This module produces a s/

/* single bar graph, representing the budget of each cost 5/

/* center. 5/

/* Files used: GRAF 5/

284

* . . -s M
,,r. .

Ia External Calls: None

#include "stdio.h"

#include "graphics.h"

int _stack a 600001

main(argc ,argv)

int argo;

char *argvo ;

/* begin main*

FILE *infile, tioutfile, *fopernos

/* Declare variables 5

char monthM3, fjlenawe(30), nenme(41;

floet cost, xl(14)jx21l4)pyl(141,x1301), y(301), z(301)s

float *(3011, b(14), c(30l)p d(301);

int of, flag, i, counat, nxdiv, nydiv, npts;

long gettimel)s

float budget, budgeti, budgetZ, z1l3), w, wl;

.pa

struct strlab /* begin Needed for string labels. ~

int flag;

* char sl(l0)s

char sZ(l0)1

char s31 10);

char zs 101;

char sSI 10);

char s6(103;s

char s7(10)1

4char s8(101;

char s9(101

285

char .101 10);

Cher *121 10);

char *13410);

char s14(10)s

/W end Needed for string labels. W

*if CIQ I Som C186 c ilers won't accept the simpler for./

static struct strlab xstring;

xstring. flagull

strcpy(xstring.o1," 31011211);

strcpylxstring.s2," 310113"1);

strcpyfxstring.s3," 310114"1);

strcpyixstrinvg.s4," 310115");

strcpylxstring.sS," 310116"1);

strcpy(xstring.s6p" 310117")1

strcpylxstring.s7p" 310118")1;

strcpy(xstring.s8,', 310119*1)s

strcpylxstring.s9,"1 310112");

strcpy(xstring.slO," 310113"1);

#also

static strucit striab xstring */* begin W

1,""," 310112",t" 310113"e," 310114","* 310115"

#endj f

strcpy(filenanw,"graf") I

if Ilinf ile a fopenlf ileriase"r")) zz NULL)

printf("Sorry, cann~ot open X.s", filename);

returns

forI i0;i<u9i..

al iW~o

bC i]O;

286

4N

-A-

d i 1=0;

counit 0;

.pe

while ((flag *facanflinfile, "Xdc'f~f", C.7*acost,&budgetl)) !~EOF)

/* begin wile 5

alcount) a cost/10001 /* costV

ercoutI z budgetl/1000; /* cost fuction budget 5

drcounatl = (budgetl/cost)/O001 /* cost funaction budget s

cousnt++s /* increment counlt

/* end while 5

fclose(infile);

/* These are the strings. V/

settinieo) /* Start timing of ru. V/

bgnplot(l,,g',"lyonsa.tkf"*); /* Initialize plot. Graphic mode 5

startplotl)

/* Change to simplex Greek and math V/

fant(4,"simplex.fnt",' 310' ,"d.plex.fnt",' 3111,"coenplax.fnt"

,3121,"simgrma.fntl,' 3131)1

xlab(&xstring); /* Turn on string labels *

cross(0 1

color(0);

physor(0.0,0.011 /*RESET DEFAULT ORIGINS/

page(9.0,6.85511

area2d(7.5,6 .5);

nxdiv=8i /* Desired # of x-axis divisions *

nydiv=6; /* Desired 0 of y-axis divisions 5

rptsu8; /* Nmber of points in x and y vectors 5

forE i=0~i~co~ut;i++) bli1z(float)(i+l)i

colorE 6)t

gridEZl /* Put fine dotted grid on plot *

287

/* Files used: GRAFI, am M

/* External Calls: None 5

--- /

*include "stdia.h"

U nclude "graphics.hl

nt -stock a 60000;

umin(argo,argv 3

int argcs

char *argvo;)

/* begin main 5

FILE *in-file, Moutfile, *fopen(3$

/* Declare variables 5

char montht 9), filerm(3O), rmme(4)1

float cost, x1114),x2114),y1114),xt301)v y(301), z(301)1

float a(301),, bil14), c(301), d(301);

int coqaits,cf, flog, ip count, nxdiv, nydiv, npts, rwpt;

long qattine($

float nwAt~udgettbudget, budgeti, budgetZ, zl(13), w, wl;

* pa

struct labstra /* begin Needed for string labels. 5

int flag;

char sl(lO)s

char SZ(lO);

char s3ElO)w

char s(101;)

char sS(IO);

char *6(lO);

char s711O)t

char sS(10);

28S9

char &9(10)t

char slOt120);

char slillO)t

char s12110);

char sl3(10);

char s141I10);

/* and Needed for string labels. W

if CIQ / Som CI86 omepilers won't accept the simipler form. w

static struct labstr ustringl

nstring. flagzll

strcpy(nstring.sl," 3100CT'l);

strcpyinstring.s2,1 31ONOVI);

strcpy(nstring.s3,11 310DECI*)s

stropyinstring.s4," 310JANII1;

strepy(nstring.sS," 31OFEB" I;

strepy(nstring.s6," 3101IAR" I;

strcpy(nstring.s7," 310APR")l

strcpylnstring.*8,' 310IAY")s

strcpy(nstring.s9,." 3101.11");

strcpylnstring.slO," 310JUL" 3;

strcpy(natring.sll," 310A(JG);

%trcpyinstring.s1Z," 310SEP" 3;

strcpytnstring.s13," 3100CT" 3;

%trcpyl nstring. s14," 31ONOV" 3;

#else

static struct labstra nstring */* begin 5

1,"If," 3100CT-1," 31ONOVI," 310BEC"," 310JAN", 310FES"

," 310MAR"," 31OAPR"," 3l1tlAYu," 31OJUN"," 310.JUL"

P" 310AUG"," 31OSEPII ,"

strcpyf filenanie, "bud");

if ((infile a fopen(filename,r"fl - NILL)

printf(ISarry, cannot open Xs", filenamel;

290

ft

4

.pe

flag z fscanflinfjlo, "Yf",a&budget),

newbudget =(budget)/l000$ /* budget C

fcloset inf ile)t

yl i 1(newbud~get/12)+wt

w-I newbudget/12 34ws

strcpy(f ilerweme,"grall 1I);

if Itinfile 2fopentfilename,"r"I3 2z NUJLL)

printf("Sorry, cannoat open 7s", filet-emell J

return;

Nl:OI

coun~t 21;

while (Mfag ufscanf(infile, "fXs",acostv8month)) !EOF)

z~couant) a Ecostwl)/l000) /* cost C t

wi1 Cos t)+w 1I s
%

counat+.s 11* increment coun4t

/* and while W

291

foloseC infWie ;

/* begin full page line plot by itself 5/

settime(); /* Start timing of run. w/

bgnplot(l,'g',"aplot.tkf"); /* Initialize plot. Graphic mode /

startplot(0)

/- Change to simplex Greek and math s/

font(4,"simplex. ft",' 310'#"duplex.fnt",' 311'

,"complex. fnt", ' 312',"simgrma. fnt",' 3131);

xlab(&nstring); /* Turn on string labels /

cross(0);

colorlo);

physor(0.0,0.0); /*RESET DEFAULT ORIGIN*/

page(9.0,6.855);

area2d(7.5,6.0);

box(3; /* Draw a box around the plot /

grid(2)s /* Put fine dotted grid on plot 5/

fntchg(' 310')l /* Changes fonts for the axes /

for(i1; i<13 ;i)

/* budget line 5/

xli =(float)(i l);

for(i1;i<=count;i++)

/* budget line /

×11 i =(float)(i+1 %

nxdiv=12i /* Desired # of x-axis divisions 5/

nydivz5; /- Desired # of divisions on linear axis */

npts = 12;

graf"",0. ,1. 12. 'X-1.0f",0. ,1. ,10.)

nstring.flag=01 /* Turn off string label option 5/

292

-'S ~ 'S* *S' ' ~ -

xlab(&nstringi; /W after axes have been drawn. W/

color(14) ;

xnamet" 310End of Month"); /* Make labels

yname(" 310Millions'")

headingf" 311Budget vs Expenses")
S

solido);

color 103;

pltfnt(9.5, 9.2p " 312110", .5, 0);

curve(x,y,npts,O); /* Draw curve with no symbols s/

ctundsho; /* Use chain-dashed line for second curve W/

color(12);

curve(xlz,ount,O)s /* Plot second curve a/

endploto; /* Terminate second plot W/

stopplot) ;

/* end main WI

6. COMBO. C

/5 program module Combo.c

/5 version 1.0 5/

/5 authors: Richard N. Hoodman 5/

/5 Michael F Rail /

/5 Program last modified 20 January 1986 5/

/* This program was produced on an IB1M clone using */

/* DOS 3.1. Hritten with the C programming language, WI

/* utilizing the GrsphicC utility software. a,

/* This is called directly from DOS after the PROJ 5/

/* system has been processed. This module produces a W/

/a full page line graph, with the solid line representing W/

/a the budget and the broken line representing the W/

/* expenses, by the month Inset in the upper left hand */

293

*** d .(~' {* tff; ~~ ii a. 2Z

AD-AIS3 264 DSS (DECISION SUPPORT SYSTEM) DEVELOPMENT EFFORTS AT 4/4
THE MARE ISLAND NAVAL SHIPYARD(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CA M F RALL ET AL. MAR 67

L F/ 5/1 NL

Eu.

m ml m ' .. m-=

NATIONAL BUREAU OF STANDARS 1 93-A

7'w 1_.2

111111.1 32.

46-op~

00earne In a siungle barm noh edwed in aim *at IV

/% plaft t*a bugt for' eah mt oenter. IV

/0t Film imed: smp Ufl, "W 0

AO Uxtanel Calls: Norma,

finolude papi.h

int -stadt a 60000%

int argot

/0 begin mai W/

FZIE Olnfiles asutfilm, UfPan)is

/V Deals"e veriablas a1

float Yl1lihxt3Ol), YE301), 24301)1

float &43011), b(141,. *4301), dE3011s

int oomte,ef. flag, i, aunt, novdive nydivv npWe

Loru wattime(Is

float eanta, ,mpnbA~mat ,~mtat A.ftet wall 13)1 pwow1s

.pa

struct strlab /0 begin Hade for string label.. 0/

mnt flags

char *1110)s

car. Wt 10) 1

dwm s3E1OIs

char *410)1

294

ovr i e r A

dar .71104

din. sill N)I

dor .94 14Is

dm. elM 101,

i40
OWNede arstin0obis

8:q C" /0 Sems 066 emmgiure w't 8MV4 #0 simleor fem.. w'

stati. ittrust strIa atrings,

intring. flag. I

sh"IF ~mtrime.s1." Sio113"5s

s*erv metefrg-al," 51011")i,

stre"y astrime-86PO 310116"l

strwy mstrafte.t sO."5101W I

$61100 "gftU1s," 11117"),

sbwv ame1.uft.7. 111W),

0traGOYE "string. 090 310119" 16

4t"rpE Katria.89," 31011216 I

strewvKatria. S10,"3113l

sat. *trumt tpeb antria m ~ begin OW'

1.""." 316112"0" 510113"." St1011t** MA01N

#" 310116"." 310117'0" 31011w."5019."

a eit lbt* /0 begn Neede far strinmg Laiasa. S./

* int fas

G~eU-Wl

stti ei--s srmarig

din.' strISin.*p IM s

din.' In-10inget lw)

*bank~ flegiG69 ls

stsqW oting.olo, SIuMN II

stu'vyitrhe,.m6," 310MC Is

ot.'awastukie.0 S3OUNSI

stray~intrsn.sl, 16MUS~l

stropvast.'iem.sk 31LOUS I;

str~ustrim.8.7,0 hOW" to

etvepymtr&n.o..9" 316AM');i

*te"V striing.slob. 3111C7'1sl

%tie stntl Imbet.' itrA.U a begn w/

lo"" SOCE".- 310OVE", S310WC," 316Vw

9" 310M."51M."" 316ULo GNM" 316.'~"."

iI 4I ief le w o 4nf ilemsso~e asn MULL I

*~ ~ #3 @ ba if W/

printfI 'brrys coumot qmn e", filwommol

MW midf Wi

vilee,

Y111061

flag fininfle, "Xfmjftft3tI

nobuft a IbtWOs /mms ufte~t ode

feel iaui'ulsli**1

wol nwdwA~t/12 lows

.110 1min"~e1I

if I Iinfil ha *ao fpfhm. 'I I as MALL)

/a bein if v/

peiuttfloser". Gervt open Is", filammai

reoarnl

IN mud I f a/

Wines

sout I I.

while Ifisf.flog oe Iifilo *Ms"Pag.tsIinth)I is 1OPI1

297

A0 begin o"16 o

nlomt..ai l~W& /0 e ast W

/0 unt#1 A ioegcon

folomeliafilols

if Ilinfilo m I~mfiinspr1 an NLL)

A0 bein if W/

printf I brrys, miwut ope Zen, fileam is

returns

/Wan t * If

W4~16 I4floo a fomfinia XfXfXf~o&gntsrpu&AMftp& I I 16 0F

/a begin IwsiJA N/

b gaut* 3 a o bud1s i1 /0 smt W/

aaunt+*$/A inerm.'t gsant 0/#

/w and ,Ailo w/

folm4e inf i Ii

sttlow It 10 Start timing of run G/

stor~lpett 11

/V0C --n I* sileN Gree ad mt 0#/

fet~~ipa~it. 311*&PAiN.fnt", i III

Klmlbsteingl /0 Turn an string)le Q/

oresof0 11

PoshiftlI -.6A3*175 1i

298

9w~i46s A osired a of xi-sl divisions w~

sydiveti 10 #%Deired 0 of y-mie divisions W/

"mttelS /0 Mmor of points in xi and y vete WI

ferE i*61Oui+*i a li SeffloatH3 Lols

gridtIl, ON Pwt fins dotted grid an plot .

mmfEI O.S.A1.09,R1t.As1g Is

ustring. flawmus AU Turn off string Idol otion W,

xlaWbatiun3s /0 of ter amms hem been drm. 3

awioins SIMCost PwmationIs A0 L.I fmw x-ads. W

hoadinyed 3111IDWOlETI A Title of plot 0/

wuomsm 312milliens'1s /a L~ml for V-ain W

olorE I)Ii

plt~itilg.S. &.2P " 31l10", .So all,

baerieuivesbphote.8 3

*41ul pqp sme Lim plot Ow

/0 Change to asilam GreA and mt aof

fwntl4"%imaIm. fnt.' 310 ."4kam. fnt* 511'

Aftemplem."nt% 3lR'Peiasrs.fntv 313111

o3111tiil

osell 1

*oew1 4 6.00 Ii #'UUUT UPMLT in1611

baitI /0 Drum a 6"aisma ow th plot 0/

iridEls A Pwt fins dotted grid on plot w4

Intsho 16811 /0 Chm~m fonts for the as m/

fort iftl Vi1S i" I

buge

/0 h~s~%J-

/3 budget 3

xl~ilu~flaet)(i+Lli

,edivmltt /W Desired * of x-exis division/

rwadveSs /V Desired 0 of divisions an lime axis N/

"Pts a It I

wveft to. 1. 0..l2.,X-Z. O0f,..Zl.III

etring. flogloo

xleb(aetring I s

mraetE 310Od of Menihm)i /3 Make Label..s

ocloet Sl0 11 os"J

.wrvelx~yqnptaO)s /0 Drew inAvw with no smbols

WindaW)S /3 Use duain-damhed line for sendr wAue /

ourveIM1,a,oeintOIs13 Plot seemid owve W/

wmilott Is /3 Terminwate ecoand plot 0/

stopploti)I /3 Close f ias mid quait 3

/M out main/

7. TRIPBAR. C

/3 propes mdule Trilee.o 0

/V vers Lan 1. 0

/3 emutlss Richard N. Sbeom 3/

/3 N"isuel F Fell 3

/3~ ~ Prop Lost modifiled 20 Javumy 1"6 3

300

/V This program "as prod ced on an IBM clam using

/3 DOS 3.1. Nritten with the C programming langumge, 5/

/m utilizing the GraphicC utility software. 5/

/, This is called directly from DOS after the PROJ 5/

/3 system has been processed. This module produces a 5/

/V Triple bar graph. The middle bar represents the budget 5/

/1 for each cost center, left bar represents the expenses 5/

/3 and the right bar represents the percentage of the 5/

/3 budget expended. N/

/3 Files useds OA 5/

/3 External Calls: Mone m/

41inolude "stdio.hu

Oinclude "graphi cs.h"

int -stck a 60000s

miniargo ,argv I

int argot

char *argvl)s

/3 begin mi n/

FILE snifile, Soutfile, *fopenf)

/0 Declare variables 5/

char mnthi31, filename(30), rms(l,)-

float cost, xl~l),xZil5),yl(14),x(301), yi301), z1301);

float eM3011!, b141, c(301), d(301)s

int of, flag, i, count, rmdiv, nydiv, nptsi

long gettim(Is

float budget, budgeti, budget2, z1(13), w, wl

301

L.

struct xleb /5 begin Needed for string labels. U

int f I" j

chear .1110)1

char s3I 1031

din. s3(10);

chsar *512lou

char .6(10)1

char *7(10)i

dur *8(10)1

char s9(10);

char s1O(10);

I /* end Needed for string labels. 5

ftf CO /* Soam C186 compiler, won't accept the simpler form. V/

static struot xlab xstrings

xatring. f lagu1;

at cpylxstring.s1,"I 310211")

at cpylxstring.stp" 310113" 31

strcpytxstring.*39" 310114")l

strcpyl xstring. .4," 310115")l1

strcpyixstring.s6,II 310117")ii

stropy(xstring.s7," 310118")l

atrcpyl xstring.s8," 310119" 31

strcpylxstring.s9," 310112")s

strepylxstring.slOt" 310113" 31

static struct xlab xstring */5 begin 5

1,""P" 310112"," 310113"," 310114"-,-- 310115"

," 310116"o" 310117" P" 310118"," 310119","

eandif

stropy(f filenoev"grsf" 3,

if I (inf ile f fopso(f ilene,"r")) muMULL)

302

1* begin If *

Printf(-Sony, cannot open ys, filemem)$

return;

/U and If *

foiliuO~~u9i*)s

blils~i

dt I IOs

while 44flag *facanflinfile, "X'faf", C.7,abudgst,ioost)) !a EOF)

/* begin whiile *

alosnatI a cost/OO0i 1* Cost U

accountl a * u t/10OOS /5 cost fumotion budget 5

dcoaunt] x lcost/budget/loo$ /* cost function X of budget 5

count++$ /5 Incremnent counmt

/5 and while *1

folosel infilo)$

/* These are the strings. 5

settims()l /5 Start timing of run. 5

bgplot(l,'Ig',"tripber.tkf")s/* Initialize plot. Graphicmoe5

/5 begin full page ber plot 5

*srtplotl 7);

/* Change to simplex Greek and math 5

fcntl*,"sImplsx.fnt",$ 310,v"diPlex.fnt",' 311'

P"omplx-fnt",I 31Vj"simgru.fnt"#, 3213)1

xlab(axstring)$ /* Turn an string labels e

4 orosslO);

color(O)i

303 '

ph~sor(0.0v0.0); /*RESET DEFAULT ORIGNM/

pege(9.0,6.S5)$

aree~dl 7.5,6.0)s

boxfl; /5 Draw a bcoc around the. plot a

modivue'.; /5 Desired # of x-axis divisionsi

nydivalo; /5 Desired 0 of y-axis divisions 5

,ytsast /* Numer of points in x and y vectors M

for(1wu1i-'9;i++) xl1ilu(float)(i+l);

for(1w0sic9ti++) x~ila(flat)Ii4.75)s

for~iuO;ic9;i.,) x2[i~wtfloet)(i+l.z3)$

0010r(6);

grid(2)s is Put fin, dotted grid on plot 5

xetring.flagaO; /* Turn off string label option 5

xlab(&xstring); /5 after axes have Iean dram. 5

color43);

Unm(3lZCost Fttion"); /* Label for x-axis *

headina(" 311BUDGET'); /S Title of plot */

ynaem(" 3l2illions") /* Label for y-axis S

oolor(2)

pltfnt(7.S,. 10.2, 11 310110",. ., 0);

ber(rucdivvxlqsa~rpts.2 1;

ber(nxdivpx3.opnptsv4);

bartnxdiv,x2,d,npts,,3)i

ancdlotI ; /* Terminate first plot s

stopplotfl /5 Close files end quit 5

/5 and main W

304

LIST OF REFERENCES

1. Keen, Peter G. W. and Michael S. Scott Morton Decision Support Systems: An
Organizational Perspective, Addison-Wesley Publishing Company, Inc., Menlo
Pa-rk, CA 1978.

2. Sjprague, Ralph H. and Eric D. Carlson Building Effective Decision Support
ystems, Prentice-Hall, Inc., Englewood Cliffs, NJ 19 82.

3. Yourdon, E., Managing the Structured Techniques: Srategies for Software
Development in the O990's, Yourdon Press, NY, 1986.

4. De Marco, T., Structured Analysis and System Specification, Yourdon Press, NY,
1978.

5. Management Analysis of the Navy Industrial Fund Program: Shipyard Review
Report Draft, Coopers and Lybrand, August 1985.

6. NA VSEA Navy Industrial Fund Financial Management Systems and Procedures
Manual, NAVSEAINST 7600.27, Washington, DC, October 1985.

7. NAVCOMPT Manual, Washington, DC, 1985.

8. Davis, William System Analysis and Design: A Structured Approach, Addison-
Wesley Publishing Co., Menlo Park, CA 1983.

9. Ariav, Gad and Michael J. Ginzber , "DSS Design: A systematic View of
Decision Support Decision Making: An Interdisciplinary Inquiry, ed. Gerardo R.
Ungson, Kent Publishing Co., NY, 1982.

10. Huber, George P. "Decision Support Systems: Their Present Nature and Future
Applications, Decision Making: An Interdisciplinary Inquiry, ed. Gerardo R.
Ungsun, Kent Publishing Co., NY, 1982.

11. Management Engineering and Information Office Mare Island Naval Shipyard
Information Resouce Management Plan, FY 87 Vol 1, May 1986.

12. TEL-A-GRAF User's Manual. Version 4.0, ISSCO, Integrated Software Systems
Corporation, San Diego, CA 1981.

13. Kroenke, D. M. Database Processing: Fundamentals, Design, Implementation,
Chicago, IL, SRA, Inc., 1983.

14. The CPL User's Guide IDR4302, Prime Computer, Inc., MASS, December 1980.

305

,IL

15. T-378-380 Prime Computer Training Manual For the Beginner, Mare Island Naval
Shipyard, Code 380.16,1984.

16. Oracle User Manual (Vol 1), Oracle Corporation, Belmont, CA, 1983.

306

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library. Code 0142
Naval 'ostgraduate School
Monterey, CA 93943-5002

3. CSM Code 0367 2
Naval Postgraduate School
Monterey, CA 93943-5002

4. Lt. M. F. Rail 2
Information Resource Management (IRM)

. . oast Guard MLC (East)
Governors Island, NY 10004

5. Capt. R. N. Woodman 2
CMC Code TPI-64
Lpited States Marine Cors. Headquarters
Washington, DC 22214

6. Information ROesocrceManae 2Manatelnen~ttln eetinf anilInflormation Office
Me Island Nv ShipyardVallejo, CA 1749:2

R

307

56MV %%Xi-

I.

*

\4%mmmm-

if
a. U a a a,: * e.~* : C*,~%S *~* ~

